• Title/Summary/Keyword: Ti-6Al-4V합금

Search Result 233, Processing Time 0.028 seconds

Prediction of Microstructure During High Temperature Forming of Ti-6Al-4V Alloy (Ti-6Al-4V 합금의 고온성형시 미세조직 예측에 관한 연구)

  • 이유환;신태진;황상무;박노광;심인옥;이종수
    • Transactions of Materials Processing
    • /
    • v.12 no.4
    • /
    • pp.290-295
    • /
    • 2003
  • High temperature deformation behavior and prediction of final microstructure after forming of Ti-6Al-4V alloy were investigated in this study. Equiaxed and Widmanstatten microstructures of Ti-6Al-4V alloys were prepared as initial microstructures and compression tests were performed to obtain the flow curves at high temperatures (700∼110$0^{\circ}C$) and various strain rates (10$^{-4}$ ∼10$^2$/s). From the results of compression test, strain rate sensitivity (m) and activation energy (Q) were calculated and used to establish constitutive equation. To predict the final microstructure after farming, finite element analysis was performed considering the microstructural parameters such as grain size and volume fraction of second phase.

Analysis of Cutting Force and Plastic Deformation Occurring During Machining of Ti-6Al-4V Alloy Aircraft Parts (Ti-6Al-4V 합금 항공기 부품 가공 시 발생하는 절삭추력 및 소성변형에 대한 해석)

  • Son, Hwi Jun;Kim, Seok;Park, Ki-Beom;Jung, Hyoun Chul;Cho, Young Tae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.8
    • /
    • pp.25-31
    • /
    • 2022
  • Recently, investment in the aerospace industry has increased, and titanium alloys have been widely adopted for manufacturing parts in the aerospace industry. The Ti-6Al-4V alloy has high strength in high-temperature and high-pressure environments and is evaluated as a material with excellent heat, corrosion, and abrasion. However, titanium alloys are expensive, difficult to cut, and possess a large cutting load during the drilling process. In this study, the cutting force generated in the drilling process of Ti-6Al-4V alloy was verified via finite element analysis (FEM) and cutting force measurement experiments. A structural analysis was performed based on the cutting analysis data to verify the plastic deformation occurring during the drilling process of cylindrical Ti-6Al-4V alloy aircraft parts. Methods were proposed to predict the amount of deformation that occur during the manufacturing process of titanium-alloy aircraft parts and control the external environment, to minimize the amount of deformation.

Densification Behavior of Ti-6Al-4V Powder Compacts at Room and High Temperatures (Ti-6Al-4V 분말 성형체의 상온 및 고온에서의 치밀화 거동)

  • Hong, Seung-Taek;Kim, Gi-Tae;Yang, Hun-Cheol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.5 s.176
    • /
    • pp.1124-1132
    • /
    • 2000
  • Viscoplastic response and densification behaviors of Ti-6AI-4V powder compacts under uniaxial compression are studied at room and high temperatures with various initial relative densities and strain rates. The yield function and strain-hardening law proposed by Kim and co-workers were implemented into a finite element program (ABAQUS) to compare experimental data with finite element calculations for porous Ti6A14V powder compacts. Displacement-relative density, displacement-load relations and deformed geometry of Ti-A14V powder compacts were compared with finite element results. Density distributions in Ti-6AI-4V powder compacts were also measured and compared with finite element results.

Prediction of microstructure during high temperature forming of Ti-6Al-4V alloy (Ti-6Al-4V 합금의 고온성형 시 미세조직 예측에 관한 연구)

  • 이유환;신태진;황상무;이종수
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.57-60
    • /
    • 2003
  • The purpose of this study is to investigate the high temperature deformation behavior of Ti-6Al-4V alloy and to predict the final microstructure under given forming conditions. Equiaxed and widmanstatten of Ti-6Al-4V alloys were prepared as initial microstructure and the compression tests were performed to obtain the flow curves at high temperatures (700∼1100$^{\circ}C$) and various strain rates (10$\^$-4/∼10$^2$/s). Form the results of compression test various parameters such as strain rate sensitivity (m) and activation energy (Q) were calculated and used to establish constitutive equations. To predict the final microstructure after forming, finite element analysis was performed considering the microstructural parameters such as the grain size and the volume fraction of second phase.

  • PDF

Process Design for Profile Ring Rolling of Ti-6Al-4V Alloy (Ti-6Al-4V합금의 형상 링 압연 공정설계)

  • Yeom, J.T.;Kim, J.H.;Lee, D.G.;Park, N.K.;Choi, S.S.;Lee, C.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.357-360
    • /
    • 2007
  • The profile ring rolling process of Ti-6Al-4V alloy was designed by finite element(FE) simulation and experimental analysis. The design includes geometry design and optimization of process variables. The geometry design such as initial billet and blank sizes, and final rolled ring shape was carried out with the calculation method based on the uniform deformation concept between the wall thickness and ring height. FEM simulation was used to calculate the state variables such as strain, strain rate and temperature and to predict the formation of forming defects during ring rolling process. Finally, the mechanical properties of profiled Ti-6Al-4V alloy ring product were analyzed with the evolution of microstructures during the ring rolling process.

  • PDF

The Effect of Microstructure on the Static and Dynamic Deformation Behavior of Ti-6Al-4V Alloy (Ti-6Al-4V 합금의 미세조직에 따른 정적 및 동적 변형에 관한 연구)

  • Lee D. G.;Lee Y. H.;Lee S. H.;Hur S. M.;Lee C. S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.10a
    • /
    • pp.277-280
    • /
    • 2001
  • The effects of a -phase morphology on the static and dynamic deformation behavior of a Ti-6Al-4V alloy was investigated in this study. Static tension test, static and dynamic tension test and hot compression test were conducted on three microstructures of Ti-6Al-4V alloy, i.e., equiaxed, widmanstatten and bimodal microstructures. Fracture surfaces of all three microstructures represented ductile fracture appearance, though the formation of adiabatic shear bands was noticed at dynamic torsion test. The susceptibility of forming adiabatic shear bands was greatest in the equiaxed microsoucture and lowest in the bimodal microstructure, which was evidenced by hot compression test.

  • PDF

The Effect of Hardening Methods and Process Parameters on Surface Hardening of Ti-6Al-4V Alloy (Ti-6Al-4V 합금의 표면 경화 시 경화기구 및 공정변수가 표면 경화에 미치는 영향)

  • Seo, D.M.;Y., H. Jeong;Hwang, T.W.;Moon, Y.H.
    • Transactions of Materials Processing
    • /
    • v.28 no.1
    • /
    • pp.27-33
    • /
    • 2019
  • The effect of hardening methods and process parameters on surface hardening of a Ti-6Al-4V Alloy has been investigated in this study. To characterize the effectiveness of the respective surface hardening methods, samples of a Ti-6Al-4V alloy were self-quenched, laser-nitrided, laser-carburized, laser-carbonitrided at the same laser irradiation conditions. This experimental procedure was followed by comparing the microstructural evolutions and mechanical properties of the respective samples after the laser surface hardenings. The hardening characteristics of the respective laser surface hardenings were well defined in this study, and the hardness was significantly influenced by the reaction compounds and laser energy density.

Dynamic Oxidation Behaviors of Aluminide Coated Titanium Alloys (알루미나이드 코팅된 티타늄 합금의 동적산화거동)

  • Son, Youngil;Park, Jinsoo;Park, Joonsik
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.5
    • /
    • pp.84-90
    • /
    • 2015
  • Titanium alloys has been received an attention due to their excellent specific strength and many other superior properties in the application of components of flying subjects. In this study, Ti-6Al-4V (Ti64 alloy) has been selected in order to evaluate oxidation and degradation behaviors under the exposure of high temperature flame. The alloy has been coated with Al diffusion coating routes. The coated alloys showed an improved oxidation and degradation behaviors. The oxidation and degradation mechanism for the coated and uncoated alloys has been discussed in terms of microstructural observations.

HEMM에 의한 복합분말의 제조와 급속소결에 의해 제조된 Ti-42wt%Nb/HAp 생체용 복합재료의 생체적합성 및 기계적 특성 연구

  • U, Gi-Do;Kim, Sang-Hyeok
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.05a
    • /
    • pp.48.2-48.2
    • /
    • 2009
  • Ti와 Ti-6%Al-4%V합금은 내 부식성 및 생체 적합성이 매우 우수하기 때문에 현재 생체재료로써 널리 사용되고 있다. 하지만 Ti-6%Al-4V합금에 포함된 Al과 V이 신체에 좋지 않은 영향을 줄 수 있다는 연구 결과가 보고되면서 새로운 생체재료의 연구가 활발히 진행되고 있다. 본 연구에서는 생체에 무해한 Ti-Nb와 hydroxyapatite(HAp)를 복합 첨가하여 고에너지볼밀링(high-energy mechanical milling, HEMM)으로 나노 합금분말을 제조 후 급속소결에 의하여 Ti-Nb/HAp 생체재료를 제조 하였다. 제조한 Ti-Nb/HAp 생체용 복합재료에서 HAp 첨가량과 분말의 밀링, 믹싱에 따른 조직 변화와 소결체의 생체적합성의 변화 및 기계적 특성의 변화를 분석하였다. 이때 Ti-42%Nb에 HAp의 첨가량을 0%, 5%, 10%, 15%로 변화를 주었고, 밀링은 고에너지볼밀링기를 이용하여 0~8시간 동안 실시하였다. 그 결과 밀링 시간이 증가할수록 합금 분말의 크기가 미세해졌으며, 특히 8시간 밀링시 분말의 크기가 나노 크기로 감소하여 기계적 특성(경도 및 강도)이 우수해지는 것을 알 수 있었다.

  • PDF

The Fabrication of Hydroxyapatite Targets and the Characteristics of Hydroxyapatite/Ti-6Al-4V Alloy Thin Films by RF Sputtering(I) (RF 스퍼터링용 Hydroxyapatite 타겟의 제조 및 Hydroxyapatite/Ti-6Al-4V 합금 박막의 특성(I))

  • Jung, Chan-Hoi;Kim, Myung-Han
    • Korean Journal of Materials Research
    • /
    • v.13 no.4
    • /
    • pp.205-212
    • /
    • 2003
  • RF sputtering process was applied to produce thin hydroxyapatite[HA, Ca10($PO_4$)$_{6}$ $ (OH)_2$films on Ti-6Al-4V alloy substrates. To make a 101.6 mm dia.${\times}$5 mm HA target, the commercial HA powder was first calcinated for 3h at $200^{\circ}C$. A certain amount of the calcinated HA powder was pressed under a pressure of 20,000 psi by the cold isostatic press(CIP) and the pressed HA target was sintered for 6 h at $1,200^{\circ}C$. The effects of different heat treating conditions on the bonding strength between HA thin films and Ti-6Al-4V alloy substrates were studied. Before deposition, the alloy substrates were annealed for 1 h at $850^{\circ}C$ under $3.0${\times}$10^{-3}$ Xtorr, and after deposition, the hydroxyapatite/Ti-6Al-4V alloy thin films were annealed for 1 h at 400, 600 and $800^{\circ}C$ under the atmosphere, respectively. Experimental results represented that the HA thin films on the annealed substrates had higher hardness than non-heat treated substrates before the deposition.