• Title/Summary/Keyword: Ti precursor

Search Result 293, Processing Time 0.035 seconds

Pyroelectric property of $Pb(Mg_{1/3}Nb_{2/3}O_3-PbTiO_3$ ceramics for pyroelectric sensor application (초전센서 응용을 위한 $Pb(Mg_{1/3}Nb_{2/3}O_3-PbTiO_3$ 세라믹계 초전특성)

  • 황학인;정종만;박준식
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.8 no.4
    • /
    • pp.667-672
    • /
    • 1998
  • Pyroelectric properties of $Pb(Mg_{1/3}Nb_{2/3})O_3-PbTiO_3$ ceramics prepared by the columbite precursor method have been investigated as a function of the sintering temperature in the range of $1000^{\circ}C$ to $1250^{\circ}C$. The $Pb(Mg_{1/3}Nb_{2/3})O_3-PbTiO_3$ ceramics show typical relaxor ferroelectric behavior. The optimum condition for obtaining samples with high densities and improved pyroelectric properties occur at a sintering temperature of $1250^{\circ}C$ and sintering times of 2 hours. The $Pb(Mg_{1/3}Nb_{2/3}O_3-PbTiO_3$ ceramics show the possibility for pyroelectric sensors with pyrostat.

  • PDF

Synthesis of Nanosized TiO$_2$ Powder by Chemical Vapor Condensation Process(1) (화학기상응축법에 의한 TiO$_2$ 나노분말의 합성 (1))

  • 김신영;유지훈;이재성;김종렬;김병기
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.7
    • /
    • pp.742-750
    • /
    • 1999
  • Nanosized TiO2 powders were synthesized using the chemical vapor conduensation (CVC) process with various precursor feeding rates (0.37 and 0.752 ml/min) and oxygen flow rates(1-2slm) conditions and powder characteristics were investigated in terms of formation of nanosized powder varying with the above processing conditions. For this study the main thermodynamic and fluid dynamic factors -supersaturation ratio collision frequency and residence time-were theoretically established and compared to the characteristics of formed TiO2 powder. The loosely combined anatase phase powders (including less than 3%of rutile phase) having 20-30nm crystallite size were obtained at overall conditions. The particle size and th degree of agglomeration for a precursor flow rate of 0.376 ml/min turn out to be smaller than for a flow rate of 0.742ml/min. And the decreasing of particles size and particle size distribution were observed with increasing oxygen flow rate as the residence time and collision frequency were reduced by increasing oxygen flow rate,. It appears that further scrutiny is needed to elucidate the influence of the individual thermodynamic and kinetic parameters mdependently.

  • PDF

Controlling Size, Shape and Polymorph of TiO2 Nanoparticles by Temperature-Controlled Hydrothermal Treatment

  • Kwon, Do Hun;Jung, Young Hee;Kim, Yeong Il
    • Journal of the Korean Chemical Society
    • /
    • v.59 no.3
    • /
    • pp.238-245
    • /
    • 2015
  • The crystallization and morphology change of amorphous titanias by hydrothermal treatment have been investigated. The amorphous titanias were prepared by pure water hydrolysis of two different precursors, titanium tetraisopropoxide (TTIP) and TTIP modified with acetic acid (HOAc) and characterized prior to hydrothermal treatment. In order to avoid complicate situation, the hydrothermal treatment was performed in a single solvent water with and without strong acids at various temperatures. The effects of strong acid, temperature and time were systematically investigated on the transformation of amorphous titania to crystalline TiO2 under simple hydrothermal condition. Without strong acid the titanias were transformed into only anatase phase nanoparticle regardless of precursor type, temperature and time herein used (up to 250 ℃ and 48 hours). The treatment temperature and time effected only on the crystalline size, not on the crystal phase et al. However, it was clearly revealed that the strong acids such as HNO3 and HCl catalyzed the formation of rutile phase depending on temperature. HCl was slightly better than HNO3 in this catalytic activity. The morphology of rutile TiO2 formed was also a little affected by the type of acid. The precursor modifier, HOAc slightly reduced the catalytic activity of the strong acids in rutile phase formation.

A study of hydroxyapatite coating on Ti-6Al-4V dental implant alloy with different surface treatments using a sol-gel derived precursor (Sol-Gel 성형체에 의해 다르게 표면 처리된 치과 Implant용 Ti-6Al-4V합금의 Hydroxyapatite 코팅에 관한 연구)

  • Han, Sok-Yoon
    • Journal of Technologic Dentistry
    • /
    • v.26 no.1
    • /
    • pp.139-144
    • /
    • 2004
  • In the present study, a simple method was successfully used for hydroxyapatite coatings on Ti-6Al-4V substrates deposited by using a sol-gel derived precursor. Prior to hydroxyapatite coating the samples were micropolished (0.1 micron) and divided into three sets. The first set,were the micropolished samples kept as such. The second set were coated with titania sol and the third set was treated with 5M NaOH. After three repetitions of hydroxyapatite coating procedures on each set and heat treatment at 600 $^{\circ}\Delta C$, the formation of hydroxyapatite has been confirmed by XRD analyses and the substrate material was found to be oxidized with negligible amount of CaO in the coating. The SEM studies revealed surface morphology. Hydroxyapatite, calcined at 600$^{\circ}\Delta C$, displaying a porous structure arisen from heating of the bulk. But, it is very meaningful in trying to approach morale management plans with an object of dental technicians. It is necessary that dental technicians should make efforts to control themselves.

  • PDF

The Photodegradation Effect of Organic Dye for Metal Oxide (Cr2O3, MgO and V2O3) Treated CNT/TiO2 Composites

  • Chen, Ming-Liang;Bae, Jang-Soon;Yoon, Hee-Seung;Lim, Chang-Sung;Oh, Won-Chun
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.3
    • /
    • pp.815-820
    • /
    • 2011
  • Three kinds of organometallic compounds (chromium acetylacetonate, magnesium acetate and vanadyl acetylacetonate) were used as transition metal precursor, titanium n-butoxide and multi-walled carbon nanotube as titanium and carbon precursor to prepare metal oxide-CNT/$TiO^2$ composites. The surface properties and morphology of metal oxide-CNT/$TiO^2$ composites were by Brauer-Emett-Teller (BET) surface area measurement, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and energy dispersive X-ray (EDX) analysis. The photocatalytic activity of prepared metal oxide-CNT/$TiO^2$ composites was determined by the degradation effect of methylene blue in an aqueous solution under irradiation of visible light.

Study on Ti-doped LiNi0.6Co0.2Mn0.2O2 Cathode Materials for High Stability Lithium Ion Batteries (고안정성 리튬이온전지 양극활물질용 Ti 치환형 LiNi0.6Co0.2Mn0.2O2 연구)

  • Jeon, Young Hee;Lim, Soo A
    • Journal of the Korean Electrochemical Society
    • /
    • v.24 no.4
    • /
    • pp.120-132
    • /
    • 2021
  • Although the development of high-Nickel is being actively carried out to solve the capacity limitation and the high price of raw cobalt due to the limitation of high voltage use of the existing LiCoO2, the deterioration of the battery characteristics due to the decrease in structural stability and increase of the Ni content. It is an important cause of delaying commercialization. Therefore, in order to increase the high stability of the Ni-rich ternary cathod material LiNi0.6Co0.2Mn0.2O2, precursor Ni0.6Co0.2Mn0.2-x(OH)2/xTiO2 was prepared using a nanosized TiO2 suspension type source for uniform Ti substitution in the precursor. It was mixed with Li2CO3, and after heating, the cathode active material LiNi0.6Co0.2Mn0.2-xTixO2 was synthesized, and the physical properties according to the Ti content were compared. Through FE-SEM and EDS mapping analysis, it was confirmed that a positive electrode active material having a uniform particle size was prepared through Ti-substituted spherical precursor and Particle Size Analyzer and internal density and strength were increased, XRD structure analysis and ICP-MS quantitative analysis confirmed that the capacity was effectively maintained even when the Ti-substituted positive electrode active material was manufactured and charging and discharging were continued at high temperature and high voltage.

Titanate Nanotube Formation and Nanostructure Development from the Reaction of TiO2 Nanopowder and Alkalihydroxide (TiO2 나노분말과 수산화알칼리와의 반응으로부터 티탄산 나노튜브의 형성과 나노구조의 전개)

  • Jin, Eun-Ju;Riu, Doh-Hyung;Huh, Seung-Hun;Kim, Chang-Yeoul;Hwang, Hae-Jin
    • Journal of Powder Materials
    • /
    • v.15 no.2
    • /
    • pp.125-135
    • /
    • 2008
  • [ $TiO_2$ ] nanotubes for photocatalytic application have been synthesized by hydrothermal method. $TiO_2$ nanotubes are formed by washing process after reaction in alkalic solution. Nanotubes with different morphology have been fabricated by changing NaOH concentration, temperature and time. $TiO_2$ nanoparticles were treated inside NaOH aqueous solution in a Teflon vessel at $110^{\circ}C$ for 20 h, after which they were washed with HCl aqueous solution and deionized water. Nanotube with the most perfect morphology was formed from 0.1 N HCl washing treatment. $TiO_2$ nanotube was also obtained when the precursor was washed with other washing solutions such as $NH_4OH$, NaCl, $K_2SO_4$, and $Na_2SO_3$. Therefore, it was suggested that $Na^+$ ion combined inside the precursor compound slowly comes out from the structure, leaving nanosheet morphology of $TiO_2$ compounds, which in turn become the nanotube in the presence of hydroxyl ion. To stabilize the sheet morphology, the different type of washing treatment solution might be considered such as amine class compounds.

Chemical Design of Highly Water-Soluble Ti, Nb and Ta Precursors for Multi-Component Oxides

  • Masato Kakihana;Judith Szanics;Masaru Tada
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.8
    • /
    • pp.893-896
    • /
    • 1999
  • Novel citric acid based Ti, Nb and Ta precursors that are highly stable in the presence of water were developed. No alkoxides of Ti, Nb and Ta were utilized in the preparation, instead much less moisture-sensitive metallic Ti, NbCl5 and TaCl5 were chosen as starting chemicals for Ti, Nb and Ta, respectively. The feasibility of these chemicals as precursors is demonstrated in the powder synthesis of BaTi4O9, Y3NbO7 and LiTaO3. The water-resistant Ti precursor was employed as a new source of water-soluble Ti in the amorphous citrate method, and phase pure BaTi4O9 in powdered form was successfully synthesized at 800 ?. The Pechini-type polymerizable complex method using the water-resistant Nb and Ta precursors was applied to the synthesis of Y3NbO7 and LiTaO3, and both the powder materials in their pure form were successfully synthesized at reduced tempera-tures, viz. 500-700 ?. The remarkable retardation of hydrolysis of these water-resistant precursors is explained in terms of the partial charge model theory.

The Effect of Plasma Gas Composition on the Nanostructures and Optical Properties of TiO2 Films Prepared by Helicon-PECVD

  • Li, D.;Dai, S.;Goullet, A.;Granier, A.
    • Nano
    • /
    • v.13 no.10
    • /
    • pp.1850124.1-1850124.12
    • /
    • 2018
  • $TiO_2$ films were deposited from oxygen/titanium tetraisopropoxide (TTIP) plasmas at low temperature by Helicon-PECVD at floating potential ($V_f$) or substrate self-bias of -50 V. The influence of titanium precursor partial pressure on the morphology, nanostructure and optical properties was investigated. Low titanium partial pressure ([TTIP] < 0.013 Pa) was applied by controlling the TTIP flow rate which is introduced by its own vapor pressure, whereas higher titanium partial pressure was formed through increasing the flow rate by using a carrier gas (CG). Then the precursor partial pressures [TTIP+CG] = 0:027 Pa and 0.093 Pa were obtained. At $V_f$, all the films exhibit a columnar structure, but the degree of inhomogeneity is decreased with the precursor partial pressure. Phase transformation from anatase ([TTIP] < 0.013 Pa) to amorphous ([TTIP+CG] = 0:093 Pa) has been evidenced since the $O^+_2$ ion to neutral flux ratio in the plasma was decreased and more carbon contained in the film. However, in the case of -50 V, the related growth rate for different precursor partial pressures is slightly (~15%) decreased. The columnar morphology at [TTIP] < 0.013 Pa has been changed into a granular structure, but still homogeneous columns are observed for [TTIP+CG] = 0:027 Pa and 0.093 Pa. Rutile phase has been generated at [TTIP] < 0:013 Pa. Ellipsometry measurements were performed on the films deposited at -50 V; results show that the precursor addition from low to high levels leads to a decrease in refractive index.