• 제목/요약/키워드: Thulium laser

검색결과 11건 처리시간 0.026초

Thulium이 첨가된 Upconversion 광섬유 Blue Laser 개발 (Development of the Thulium Doped Upconversion Fiber Blue Laser)

  • 황대석;김규식;허창우;이영우
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2003년도 추계종합학술대회
    • /
    • pp.439-441
    • /
    • 2003
  • 본 연구에서는 Thulium(Tm$^{3+}$ )이 첨가된 광섬유를 이용, Upconversion blue 레이저의 개발을 위해 fiber 길이 및 파워 변화에 따른 최적화된 설계 기준 값을 찾기 위한 시뮬레이션 코드를 개발하고 그 해석을 행하였다. 1140nm의 여기광원을 이용하여 여기하였을 때 광섬유 길이 40cm에서 약 100mW의 발진 문턱값을 갖으며 1W의 여기 광원에 대해 60mW의 출력 특성이 예상된다.

  • PDF

200-W Continuous-wave Thulium-doped All-fiber Laser at 2050 nm

  • Shin, Jae Sung;Cha, Yong-Ho;Chun, Byung Jae;Jeong, Do-Young;Park, Hyunmin
    • Current Optics and Photonics
    • /
    • 제5권3호
    • /
    • pp.306-310
    • /
    • 2021
  • A 200-W continuous-wave thulium-doped all-fiber laser at 2050 nm was developed with a master oscillator power amplifier configuration. For the master oscillator, a single-mode thulium-doped fiber laser was built with fiber Bragg gratings. The operating power of the oscillator was 10.1 W at a pump power of 20.9 W, and the slope efficiency was measured to be 53.0%. All emitted wavelengths of the oscillator were located between 2049.2 nm and 2049.9 nm, and no other peaks in different wavelength ranges were observed. The maximum output power of the final amplified beam was 204.6 W at a pump power of 350.4 W. The slope efficiency of the amplifier was measured to be 58.4%.

Optical Stimulation and Pacing of the Embryonic Chicken Heart via Thulium Laser Irradiation

  • Chung, Hong;Chung, Euiheon
    • Current Optics and Photonics
    • /
    • 제3권1호
    • /
    • pp.1-7
    • /
    • 2019
  • Optical stimulation provides a promising alternative to electrical stimulation to selectively modulate tissue. However, developing noninvasive techniques to directly stimulate excitable tissue without introducing genetic modifications and minimizing cellular stress remains an ongoing challenge. Infrared (IR) light has been used to achieve optical pacing for electrophysiological studies in embryonic quail and mammalian hearts. Here, we demonstrate optical stimulation and pacing of the embryonic chicken heart using a pulsed infrared thulium laser with a wavelength of 1927 nm. By recording stereomicroscope outputs and quantifying heart rates and movements through video processing, we found that heart rate increases instantly following irradiation with a large spot size and high radiant exposure. Targeting the atrium using a smaller spot size and lower radiant exposure achieved pacing, as the heart rate synchronized with the laser to 2 Hz. This study demonstrates the viability of using the 1927 nm thulium laser for cardiac stimulation and optical pacing, expanding the optical parameters and IR lasers that can be used to modulate cardiac dynamics.

S/S+band에서 넓은 파장가변 영역을 가지고 50-GHz ITU-T격자에 맞는 채널을 생성하는 thulium이 첨가된 광섬유 레이저 (Widely tunable thulium-doped fiber laser anchored on 50-GHz ITU-T grid in S/S+ band)

  • 안성준;박철근;안승준;박종한;박남규
    • 한국광학회지
    • /
    • 제15권1호
    • /
    • pp.17-21
    • /
    • 2004
  • S/S+band에서 ITU-T의 50 ㎓격자에 맞는 채널을 가지는 광대역 파장가변 thulium첨가 광섬유레이저(TTDFL)를 개발하였다. 1.4$\mu\textrm{m}$$1.5\mu\textrm{m}$두 대역의 광원으로 펌핑되는 thulium첨가 광섬유(TDF)의 반전에 관한 분석을 통해, 대부분의 S/S+band에서 파장을 가변할 수 있는 레이저를 구현하였다. 이 파장가변 레이저는 65.1nm의 넓은 3-㏈ 대역폭 내에서 6.7㏈m이상의 평탄한 출력 스펙트럼을 보여주었고, 생성된 DWDM채널 수는 178개에 달하였다. 또한 보조 펌프의 출력을 더 높일경우 66.2 nm까지도 대역폭을 넓힐 수 있었고, 공진기 내부 필터의 온도를 조절함으로써 레이저의 주파수를 더욱 안정화 할 수 있음도 보였다. 본 연구에서 개발된 이 레이저는 S/S+band에서 기준 파장을 제공하는 유용한 광원으로 활용될 수 있다.

40-W 200-ns 300-kHz Thulium-doped Fiber Laser at 2050 nm

  • Shin, Jae Sung;Cha, Yong-Ho;Chun, Byung Jae;Park, Hyunmin
    • Current Optics and Photonics
    • /
    • 제5권5호
    • /
    • pp.544-553
    • /
    • 2021
  • A 40-W 200-ns 300-kHz thulium-doped fiber laser at 2050 nm with a master oscillator power amplifier configuration was developed, for application to lithium-isotope separation. The master oscillator generated a 5.35 W continuous-wave beam, which the pulse generator then broke into 200-ns pulses at 300 kHz. Then, the laser beam was amplified by passing through a two-stage amplifier. The output power finally obtained was 42.0 W at 2050 nm, and was stable for a long time, over 2 hours. In spite of this achievement, mode instability was observed in the output beam. This can be solved in the future by using a method such as tight coiling.

금 증착 측면연마 광섬유를 이용한 1.93㎛ 모드잠금 펨토초 전광섬유 MOPA 레이저 (Passively Mode-Locked 1.93-㎛ All-Fiberized Femtosecond MOPA Laser Using a Gold-Deposited Side-Polished Fiber)

  • 정민완;구준회;이주한
    • 한국광학회지
    • /
    • 제25권6호
    • /
    • pp.340-345
    • /
    • 2014
  • 본 논문에서는 금이 증착된 측면연마 광섬유를 $2{\mu}m$ 대역 편광기로 이용하여 Thulium/Holmium 첨가 광섬유 기반 링 캐비티로부터 모드 잠금 레이저를 구현할 수 있음을 실험적으로 보였다. 모드 잠금 현상은 광섬유로 구성된 공진기 내부에서 진행하는 빔이 겪는 Nonlinear Polarization Rotation 현상에 기반하여 삽입된 금 증착 측면연마 광섬유에서 발생되는 Nonlinear Transmission 반응에 의해 유도되었다. 또한 공진기로부터 발생되는 출력 $1.93{\mu}m$ 파장의 광펄스를 Thulium/Holmium 첨가 광섬유 증폭기를 통과시켜 Higher Order Soliton Effect를 통해 압축시킴으로써 최대 첨두 출력 ~6.7 kW를 갖는 펄스폭 ~558 fs의 고출력 펨토초 펄스를 얻을 수 있음을 실험적으로 보였다.

All-fiber Tm-Ho Codoped Laser Operating at 1700 nm

  • Park, Jaedeok;Ryu, Siheon;Yeom, Dong-Il
    • Current Optics and Photonics
    • /
    • 제2권4호
    • /
    • pp.356-360
    • /
    • 2018
  • We demonstrate continuous-wave operation of an all-fiber thulium-holmium codoped laser operating at a wavelength of 1706.3 nm. To realize laser operation in the short-wavelength region of the emission-band edge of thulium in silica fiber, we employ fiber Bragg gratings having resonant reflection at a wavelength around 1700 nm as a wavelength-selective mirror in an all-fiber cavity scheme. We first examine the performance of the laser by adjusting the central wavelength of the in-band pump source. Although a pump source possessing a longer wavelength is observed to provide reduced laser threshold power and increased slope efficiency, because of the characteristics of spectral response in the gain fiber, we find that the optimal pump wavelength is 1565 nm to obtain maximum laser output power for a given system. We further explore the properties of the laser by varying the fiber gain length from 1 m to 1.4 m, for the purpose of power scaling. It is revealed that the laser shows optimal performance in terms of output power and slope efficiency at a gain length of 1.3 m, where we obtain a maximum output power of 249 mW for an applied pump power of 2.1 W. A maximum slope efficiency is also estimated to be 23% under these conditions.

Clinical Applications of a Non-ablative Fractional Dual Laser (1550/1927 nm)

  • Chang, Ho Sun;Lim, Nam Kyu
    • Medical Lasers
    • /
    • 제9권2호
    • /
    • pp.110-118
    • /
    • 2020
  • The non-ablative fractional dual laser is equipped with two types of lasers, 1550 nm and 1927 nm in one device, and was approved by the United States Food and Drug Administration in 2013. The advantages of the non-ablative fractional laser (NAFL) include fewer side effects such as erythema, edema, post-laser pigmentation, and scab formation. Thus, the NAFL is preferred by both practitioners and consumers because it is convenient and safe for use. The 1550 nm erbium glass and 1927 nm thulium lasers are representative NAFLs that have been developed separately and are often used as a single-wavelength laser with proven clinical efficacy in various indications. The 1550 nm wavelength laser penetrates the dermis layer and the 1927 nm wavelength laser is effective for epidermal lesions. Therefore, targeting the skin layer can be easily achieved with both the 1550 and 1927 nm lasers, respectively, or in combination. Clinically, the 1550 nm laser is effective in the treatment of mild to moderate sagging and wrinkles, scars, and resurfacing. The 1927 nm laser improves skin texture and treats skin pigmentation and wounds. It can also be used for drug delivery. The selection and utilization rate of NAFL has been increasing in recent times, due to changes in lifestyle patterns and the need for beauty treatments with fewer side effects and short downtime. In this study, we present a plan for safe and effective laser therapy through a review of literature. Clinical applications of the multifunctional NAFL are also described.

Oxyfluoroborate 유리재료에서의 적외선-청색 상방 형광발생 (Infrared-to-blue Upconversion in Tm-doped Oxyfluoroborate Glasses)

  • P. Babu;Lee Seon-Gyun;Van-Thai Pham;Im Gi-Su;Seo Hyo-Jin;C. K. Jayasankar
    • 한국광학회:학술대회논문집
    • /
    • 한국광학회 2002년도 하계학술발표회
    • /
    • pp.116-117
    • /
    • 2002
  • In recent years, there has been an increasing interest in $Tm^{3+}$ doped crystals and glasses due to their potential applications as near infrared lasers and infrared to visible upconversion lasers for use in different fields such as medical surgery, eye safe laser radar, data storage, barcode reading and so on. Thulium ions have stable excited levels suitable for emitting blue upconversion fluorescence. (omitted)

  • PDF

Non-ablative Fractional Thulium Laser Irradiation Suppresses Early Tumor Growth

  • Yoo, Su Woong;Park, Hee-Jin;Oh, Gyungseok;Hwang, Soonjoo;Yun, Misun;Wang, Taejun;Seo, Young-Seok;Min, Jung-Joon;Kim, Ki Hean;Kim, Eung-Sam;Kim, Young L.;Chung, Euiheon
    • Current Optics and Photonics
    • /
    • 제1권1호
    • /
    • pp.51-59
    • /
    • 2017
  • In addition to its typical use for skin rejuvenation, fractional laser irradiation of early cancerous lesions may reduce the risk of tumor development as a byproduct of wound healing in the stroma after the controlled injury. While fractional ablative lasers are commonly used for cosmetic/aesthetic purposes (e.g., photorejuvenation, hair removal, and scar reduction), we propose a novel use of such laser treatments as a stromal treatment to delay tumorigenesis and suppress carcinogenesis. In this study, we found that non-ablative fractional laser (NAFL) irradiation may have a possible suppressive effect on early tumor growth in syngeneic mouse tumor models. We included two syngeneic mouse tumor models in irradiation groups and control groups. In the irradiation group, a thulium fiber based NAFL at 1927 nm was used to irradiate the skin area including the tumor injection region with 70 mJ/spot, while no laser irradiation was applied to the control group. Numerical simulation with the same experimental condition showed that thermal damage was confined only to the irradiation spots, sparing the adjacent tissue area. The irradiation groups of both tumor models showed smaller tumor volumes than the control group at an early tumor growth stage. We also detected elevated inflammatory cytokine levels a day after the NAFL irradiation. NAFL treatment of the stromal tissue could potentially be an alternative anticancer therapeutic modality for early tumorigenesis in a minimally invasive manner.