• Title/Summary/Keyword: Thruster alignment analysis

Search Result 2, Processing Time 0.017 seconds

A Study on Accurate Alignment Measurement of Dual Thruster Module Using Theodolite (데오드라이트를 이용한 이중 추력기 모듈의 정밀정렬측정에 관한 연구)

  • Hwang, Kwon-Tae;Moon, Guee-Won;Cho, Chang-Lae;Lee, Dong-Woo;Lee, Sang-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.11
    • /
    • pp.1399-1404
    • /
    • 2012
  • Because satellites operate in space, it is impossible to repair them when they malfunction. Therefore, to ensure the normal function of the payload used in the satellites, accurate assembly and installation of parts are crucial. To prevent abnormal functioning in the extreme environments during launch and in space, it is essential to test changes at the parts and system levels by performing alignment measurement before and after the launch environment test and the space environment test. Recently, noncontact three-dimensional precision machinery for medium- and large-sized parts has been developed. One of these is the theodolite measurement system, which is widely used in the aerospace industry. This study measures the angle of the dual thruster module that is used to control the attitude of KOMPSAT by using a theodolite, and alignment measurement and a reliability analysis are performed.

Stress Analysis of the GEO-KOMPSAT-2 Tubing System (정지궤도복합위성 추진계 배관망 구조해석)

  • Jeong, Gyu;Lim, Jae Hyuk;Chae, Jongwon;Jeon, Hyung-Yoll
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.1
    • /
    • pp.47-56
    • /
    • 2018
  • In this paper, the structural analysis of the Geostationary Korea Multi-Purpose Satellite-2 (GEO-KOMPSAT-2) tubing system is discussed, and the structural integrity of the tubing system is assessed by comparative analysis with the results of overseas partner AIRBUS. Securing structural reliability of the tubing system is a very important key element of the propulsion system of the GEO-KOMPSAT-2 satellite. Therefore, FE modeling of the propulsion tubing was carried out directly using the CAE program, and structural analysis was performed to evaluate the stress state under launch conditions. Hoop stress, axial stress, bending stress, and torsion stress were calculated according to diverse load conditions by using pressure stress analysis, thruster alignment analysis, sine qualification load analysis, and random qualification load analysis. From the results, the Margin of Safety (MoS) of the tubing system is evaluated, and we can verify the structural integrity of the tubing system when subjected to various launch loads.