• Title/Summary/Keyword: Thrust Nozzle

Search Result 304, Processing Time 0.026 seconds

Performance Study of Supersonic Nozzle with Asymmetric Entrance Shape (유입부 비대칭 노즐의 성능연구)

  • Lee Ji-Hyung;Kim Joug-Keun;Lee Do-Hyung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.10 no.2
    • /
    • pp.46-52
    • /
    • 2006
  • Techniques used for thrust vector control in rocket motors are mainly classified nozzles installed mechanical interference on the expansive region of nozzle(such as jet tabs and jet vanes) and movable nozzles(such as ball&socket and flexible seal). Using the numerical analysis and cold-flow test, this paper evaluates the performance of supersonic nozzle with asymmetric entrance shape when the test nozzle, especially ball&socket, is tilted. Numerical result shows that the effect of the asymmetric entrance shape on the flow field is suddenly diminished at the nozzle throat and downstream is mostly free from the effect of asymmetric entrance shape. Although the calculated thrust and lateral force are less than those of cold-flow test, two results show a fairly good agreement. But the cold-flow test results indicate the effective angles calculated from measured forces are not agreement with the geometric angles.

Performance Study of Supersonic Nozzle with Asymmetric Entrance Shape (유입부 비대칭 노즐의 성능연구)

  • Lee Ji-Hyung;Kim Joug-Keun;Lee Do-Hyung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.40-45
    • /
    • 2005
  • Techniques used for throcket motors are mainly classified as fixed nozzles with mechanical exhaust jet interferences on the expansion region (such as jet tabs and jet vanes) and movable nozzles(such as ball&socket md flexible seal). Using the numerical analysis and the cold-flow test, this paper evaluates the performance of supersonic nozzle for asymmetric entrance shape at tilted position of ball&socket nozzle. Numerical results show that the asymmetric effects in the flow fields are gradually diminished up to the nozzle throat and are not noticeable downstream of the nozzle throat. Although the calculated thrust and the lateral force are less than those of cold-flow test, two results show a flirty good agreement.

  • PDF

Numerical Analysis on the flow characteristics of L-type side jet thruster (L-type 측추력 발생장치의 유동특성 해석)

  • Lim, S.;Jeon, Y.J.;Cho, S.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.368-372
    • /
    • 2011
  • The aerodynamic characteristics of the L-type side jet thruster are examined by using computational fluid dynamics methods. The critical design points of L-type side jet thruster with bent nozzle by 90degrees are studied in terms of the relation between side jet nozzle geometry and thrust efficiency.

  • PDF

An study on the ramp tabs for thurst vector control symmetrically installed at the supersonic nozzle exit (초음속 노즐 출구에 대칭적으로 설치한 추력방향제어장치인 램프 탭의 연구)

  • Kim, Kyoung-Rean;Ko, Jae-Myoung;Park, Jong-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.10 no.6
    • /
    • pp.32-37
    • /
    • 2007
  • Aerodynamic forces and moments have been used to control rocket propelled vehicles. If control is required at very low speed, Those systems only provide a limited capability because aerodynamic control force is proportional to the air density and low dynamic pressure. But thrust vector control(TVC) can overcome the disadvantages. TVC is the method which generates the side force and roll moment by controlling exhausted gas directly in a rocket nozzle. TVC is classified by mechanical and fluid dynamic methods. Mechanical methods can change the flow direction by several objects installed in a rocket nozzle exhaust such as tapered ramp tabs and jet vane. Fluid dynamic methods control the flight direction with the injection of secondary gaseous flows into the rocket nozzle. The tapered ramp tabs of mechanical methods are used in this paper. They installed at the rear in the rocket nozzle could be freely moved along axial and radial direction on the mounting ring to provide the mass flow rate which is injected from the rocket nozzle. In this paper, the conceptual design and the study on the tapered ramp tabs of the thurst vector control has been carried out using the supersonic cold flow system and schlieren system. This paper provides the thrust spoilage, three directional forces and moments and distribution of surface pressure on the region enclosed by the tapered ramp tabs.

Study on super-hydrophobic electro-spray micro thruster and measurement of micro scale thrust (초소수성 전기 분무 마이크로 추진 장치 및 마이크로 추력 측정)

  • Lee, Young-Jong;Yoo, Yong-Hoon;Tran, Si Bui Quang;Kim, Sang-Hoon;Park, Bae-Ho;Buyn, Do-Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.2
    • /
    • pp.175-180
    • /
    • 2009
  • In this article, we fabricated polytetrafluoroethylene(PTFE) nozzle treated by ion beam, in order to fabricate polymer based electrospray micro thruster with super hydrophobic nozzle. To obtain the super hydrophobic surface, PTFE surface is treated by argon and oxygen plasma treatment process. The optimal condition is investigated argon and oxygen flow rate as well as the paalied energy level for the treatment process. Fabricated nozzle was evaluated by measuring contact angle, and the surface morphology was examined by using scanning electron microscope(SEM) and atomic force microscope(AFM). We observe that jetting becomes more stable and repeatable on the treated nozzle. And to evaluate performance of fabricated nozzle, we measure micro scale thrust using a cantilever and a nozzle treated by ion beam laser displacement sensor.

Numerical Study on Transition Characteristics of Dual Bell Nozzle with Expansion Ratio Fixed (팽창비가 고정된 듀얼 벨 노즐의 천이특성에 대한 수치해석 연구)

  • Choi, Junsub;Huh, Hwanil
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.3
    • /
    • pp.68-75
    • /
    • 2017
  • Dual bell nozzle is a type of altitude compensation nozzle, which is a nozzle that minimize the losses of the specific impulse at the off-design point of a typical bell nozzle. In this paper, numerical computations are performed to understand the transition characteristics of dual bell nozzles with fixed expansion ratios. The major design variables are the length of extension and the angle of inflection. As the length of the extension increased, the transition altitude and transition duration increased and the reduction of the thrust coefficient decreased. As the angle of inflection increased, the transition altitude and transition duration decreased and the reduction of the thrust coefficient increased.

A Performance Characteristics of the Thruster Nozzle for Attitude Control of Space Vehicle According to Flight Altitude (우주비행체 자세제어용 추력기 노즐의 비행고도 변이별 추력성능 특성 해석)

  • Kam, Ho-Dong;Choi, Hyun-Ah;Kim, Jeong-Soo;Bae, Dae-Seok;Kim, In-Tae
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.167-171
    • /
    • 2012
  • A computational analysis of nozzle flow is conducted to investigate effects of the flight altitude on thrust performance. Reynolds-averaged Navier-Stokes equation with k-${\omega}$ SST(Shear Stress Transport) turbulence model is employed to simulate the nozzle flow in various altitude conditions, where continuum mechanics is to be valid. Thrust performance of the nozzle is exceedingly poor upto 10 km of flight altitude because of the irreversible phenomena such as shock and/or flow separation occurring inside the nozzle, whereas it is restored to the nominal value as the altitude is attained higher than 30 km.

  • PDF

Design of Test Device for Quantitative Observation of Performances of Thrust-Vectoring Nozzle (추력편향 노즐의 정량적 성능특성 관찰을 위한 시험장치 설계)

  • Song, Myung-Jun;Yoon, Sang-Hun;Cho, Yong-Ho;Lee, Yeol
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.404-407
    • /
    • 2011
  • The fluidic thrust vector control using co-flowing coanda effect of secondary jet at the nozzle exit is a new concept for efficient thrust vectoring of supersonic jet exhausts. Flow visualization of the flow fields in previous studies have shown some pros and cons of the technique, however, most of the observations were somewhat limited as qualitative data. The present study was designed to evaluate the quantitative performance-characteristics of the thrust-vectoring technique utilizing coanda effects of the secondary jet. Details of design of the test device and calibration/data reduction procedure are provided.

  • PDF

Study of Thrust-Vectoring Control Using Fluidic Counterflow Concept (Fluidic Counterflow 개념을 이용한 추력벡터제어에 관한 연구)

  • Jung, Sung-Jae;Lim, Chae-Min;Kim, Heuy-Dong
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1948-1954
    • /
    • 2003
  • The thrust vector control using a fluidic counterflow concept is achieved by applying a vacuum to a slot adjacent to a primary jet which is shrouded by a suction collar. The vacuum produces a secondary reverse flowing stream near the primary jet. The shear layers between the two counterflowing streams mix and entrain mass from the surrounding fluid. The presence of the collar inhibits mass entrainment and the flow near the collar accelerates causing a drop in pressure on the collar. For the vacuum asymmetrically applied to one side of the nozzle, the jet will vector toward the low-pressure region. The present study is performed to investigate the effectiveness of thrust vector control using the fluidic counterflow concept. A computational work is carried out using the two-dimensional, compressible Navier-Stokes equations, with several kinds of turbulence models. The computational results are compared with the previous experimental ones. It is found that the present fluidic counterflow concept is a viable method to vector the thrust of a propulsion system.

  • PDF