• Title/Summary/Keyword: Thrus

Search Result 2, Processing Time 0.018 seconds

Experimental Study for Performance Evaluation of Gate Valve (게이트밸브의 성능평가를 위한 실험적 연구)

  • Cho, Tack-Dong;Yang, Sang-Min
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.10
    • /
    • pp.884-888
    • /
    • 2007
  • It is necessary to evaluate periodically the performance of the AOV(air-operated valve) which is used for controlling flow and pressure in nuclear power plant. The required thrust for actuating valve and available thrust of actuator are calculated with conditions of flow through a valve in this study and operating performance is analyzed through comparing two thrusts. In general, differential pressure is increased according to increase the flow rate and differential pressure affects the required thrust of valve. We found the fact that it is possible not to close the valve perfectly because required thrust becomes bigger than available thrust of actuator.

CFD-based Thrust Analysis of Unmanned Aerial Vehicle in Hover Mode: Effects of Single Rotor Blade Shape (무인비행체 블레이드 형상 변화에 따른 단일로터의 제자리 비행 추력성능 분석)

  • Yun, Jae Hyun;Choi, Ha-Young;Lee, Jongsoo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.5
    • /
    • pp.513-520
    • /
    • 2014
  • An unmanned aerial vehicle (UAV) should be designed to be as small and lightweight as possible to optimize the efficiency of changing the blade shape to enhance the aerodynamic performance, such as the thrust and power. In this study, a computational fluid dynamics (CFD) simulation of an unmanned multi-rotor aerial vehicle in hover mode was performed to explore the thrust performance in terms of the blade rotational speed and blade shape parameters (i.e., taper ratio and twist angle). The commercial ADINA-CFD program was used to generate the CFD data, and the results were compared with those obtained from blade element theory (BET). The results showed that changes in the blade shape clearly affect the aerodynamic thrust of a UAV rotor blade.