• Title/Summary/Keyword: Throughput Maximization

Search Result 62, Processing Time 0.028 seconds

Reference Vector Diversity of Subspace Interference Alignment in Multi-cell Multi-user Uplink Systems (부분공간 간섭 정렬을 이용한 다중 셀 상향링크 시스템에서 합용량 향상을 위한 레퍼런스 벡터 다이버서티)

  • Seo, Jong-Pil;Lee, Yoon-Ju;Kwon, Dong-Seung;Lee, Myung-Hoon;Chung, Jae-Hak
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.7
    • /
    • pp.23-28
    • /
    • 2010
  • We propose a reference vector diversity method in multi-cell multi-user uplink system with the subspace interference alignment to obtain higher sum rate capacity. The proposed method transmits several reference vectors before the data transmission, and selects the best reference vector to maximize the cell sum rate. The proposed method provides higher sum-rate capacity compared with the previous interferenc alignment. Simulation result exhibits the proposed method improves the sum-rate capacity by 60%.

Throughput Maximization by Efficient Subcarrier Allocation in an OFDMA-based CR Network (OFDMA 기반 CR 네트워크에서 효율적인 부반송파 할당을 통한 시스템 용량 극대화 방안)

  • Park, Jae-Hyun;Yoo, Jung-Min;Kim, Duk-Kyung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.2A
    • /
    • pp.179-187
    • /
    • 2011
  • Recently, cognitive radio attracts lots of interest to effectively utilize the limited spectral resource. In the previous researches, we proposed a method to enhance the system capacity of the overall network by using Selfish Symbiotic architecture and Non-selfish Symbiotic architecture. In this research, we further enhance the previous works to OFDM-based CR networks by using efficient subchannel allocation. The system performance is evaluated through intensive simulations with multiple primary users as well as a single primary user with different numbers of CR users.

Unlicensed Band Traffic and Fairness Maximization Approach Based on Rate-Splitting Multiple Access (전송률 분할 다중 접속 기술을 활용한 비면허 대역의 트래픽과 공정성 최대화 기법)

  • Jeon Zang Woo;Kim Sung Wook
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.12 no.10
    • /
    • pp.299-308
    • /
    • 2023
  • As the spectrum shortage problem has accelerated by the emergence of various services, New Radio-Unlicensed (NR-U) has appeared, allowing users who communicated in licensed bands to communicate in unlicensed bands. However, NR-U network users reduce the performance of Wi-Fi network users who communicate in the same unlicensed band. In this paper, we aim to simultaneously maximize the fairness and throughput of the unlicensed band, where the NR-U network users and the WiFi network users coexist. First, we propose an optimal power allocation scheme based on Monte Carlo Policy Gradient of reinforcement learning to maximize the sum of rates of NR-U networks utilizing rate-splitting multiple access in unlicensed bands. Then, we propose a channel occupancy time division algorithm based on sequential Raiffa bargaining solution of game theory that can simultaneously maximize system throughput and fairness for the coexistence of NR-U and WiFi networks in the same unlicensed band. Simulation results show that the rate splitting multiple access shows better performance than the conventional multiple access technology by comparing the sum-rate when the result value is finally converged under the same transmission power. In addition, we compare the data transfer amount and fairness of NR-U network users, WiFi network users, and total system, and prove that the channel occupancy time division algorithm based on sequential Raiffa bargaining solution of this paper satisfies throughput and fairness at the same time than other algorithms.

A Study on Real Time Traffic Performance Improvement Considering QoS in IEEE 802.15.6 WBAN Environments (IEEE 802.15.6 WBAN 환경에서 QoS를 고려한 실시간 트래픽 성능향상에 관한 연구)

  • Ro, Seung-Min;Kim, Chung-Ho;Kang, Chul-Ho
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.48 no.4
    • /
    • pp.84-91
    • /
    • 2011
  • Recently, WBAN(Wireless Body Area Network) which has progressed standardization based on IEEE 802.15.6 standardization is a network for the purpose of the short-range wireless communications within around 3 meters from the inner or outer human body. Effective QoS control technique and data efficient management in limited bandwidth such as audio and video are important elements in terms of users and loads in short-range wireless networks. In this paper, for high-speed WBAN IEEE 802.15.6 standard, the dynamic allocation to give an efficient bandwidth management and weighted fair queueing algorithm have been proposed through the adjustment of the super-frame about limited data and Quality of Service (QoS) based on the queuing algorithm. Weighted Fair Queueing(WFQ) Algorithm represents the robust performance about elements to qualitative aspects as well as maintaining fairness and maximization of system performance. The performance results show that the dynamic allocation expanded transmission bandwidth five times and the weighted fair queueing increased maximum 24.3 % throughput and also resolved delay bound problem.

Optimization and Performance Analysis of Partial Multiplexing (부분 다중화의 성능 분석 및 최적화)

  • Kim, Seong Hwan;Ban, Tae Won;Jung, Bang Chul
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.7
    • /
    • pp.1589-1596
    • /
    • 2013
  • Recently, spectral efficiency or reliability is required to be improved in the scenario of multiple access. In this paper, we consider a scenario where two source nodes access one destination node. Different with conventional multiple access studies, in our research, a part of the allocated resource is shared by two source nodes and this scheme is called partial multiplexing. Let $R_s$ denote the ratio of the amount of the shared resource to that of the resource allocated to each user. We analyze and optimize the performance of the partial multiplexing in term of $R_s$. We show that the optimal $R_s$ to maximize the throughput is 1 or 0 based on approximated bit error rate (BER). In addition, if we set a constraint on frame error rate (FER), $R_s$ can have a value between 0 and 1. We also find the approximated $R_s$ to meet the constraint as a closed form. Partial multiplexing can be a novel multiple access scheme.

A Study on the Microbial Measurement for Cosmetics Using Automated Methods (자동화 장비를 사용한 화장품중의 미생물 검출에 대한 연구)

  • Kim Eun-Young;Jang Seok-Tae;Choung Soung-Oun;Hong Tae-Won
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.30 no.4 s.48
    • /
    • pp.549-553
    • /
    • 2004
  • ATP bioluminescence system and impedance system were evaluated with the objective of reducing the time for microbial analysis of cosmetics formulations from 72 to 24 h. The meaningful correlation (at least $95\%$) was achieved when emulsion were artificially contaminated with low levels of different organisms, including Pseudomonas aeruinosa, Staphylococcus aureus, Escherichia coli and Ralstonia mannitolilytica. The standard agar plate method, ATP bioluminescence and impedance method were used for in this study. Successful evaluation and validation of automated systems has enabled the introduction of ATP bioluminescence and impedance method into routine use within the microbiology laboratory. This has provided a rapid assessment of product quality, resulting in faster throughput and resource maximization.

A Near Optimal Linear Preceding for Multiuser MIMO Throughput Maximization (다중 안테나 다중 사용자 환경에서 최대 전송율에 근접하는 선형 precoding 기법)

  • Jang, Seung-Hun;Yang, Jang-Hoon;Jang, Kyu-Hwan;Kim, Dong-Ku
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.4C
    • /
    • pp.414-423
    • /
    • 2009
  • This paper considers a linear precoding scheme that achieves near optimal sum rate. While the minimum mean square error (MMSE) precoding provides the better MSE performance at all signal-to-noise ratio (SNR) than the zero forcing (ZF) precoding, its sum rate shows superior performance to ZF precoding at low SNR but inferior performance to ZF precoding at high SNR, From this observation, we first propose a near optimal linear precoding scheme in terms of sum rate. The resulting precoding scheme regularizes ZF precoding to maximize the sum rate, resulting in better sum rate performance than both ZF precoding and MMSE precoding at all SNR ranges. To find regularization parameters, we propose a simple algorithm such that locally maximal sum rate is achieved. As a low complexity alternative, we also propose a simple power re-allocation scheme in the conventional regularized channel inversion scheme. Finally, the proposed scheme is tested under the presence of channel estimation error. By simulation, we show that the proposed scheme can maintain the performance gain in the presence of channel estimation error and is robust to the channel estimation error.

Genetic Algorithm based Resource Management for Cognitive Mesh Networks with Real-time and Non-real-time Services

  • Shan, Hangguan;Ye, Ziyun;Bi, Yuanguo;Huang, Aiping
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.8
    • /
    • pp.2774-2796
    • /
    • 2015
  • Quality-of-service (QoS) provisioning for a cognitive mesh network (CMN) with heterogeneous services has become a challenging area of research in recent days. Considering both real-time (RT) and non-real-time (NRT) traffic in a multihop CMN, [1] studied cross-layer resource management, including joint access control, route selection, and resource allocation. Due to the complexity of the formulated resource allocation problems, which are mixed-integer non-linear programming, a low-complexity yet efficient algorithm was proposed there to approximately solve the formulated optimization problems. In contrast, in this work, we present an application of genetic algorithm (GA) to re-address the hard resource allocation problems studied in [1]. Novel initialization, selection, crossover, and mutation operations are designed such that solutions with enough randomness can be generated and converge with as less number of attempts as possible, thus improving the efficiency of the algorithm effectively. Simulation results show the effectiveness of the newly proposed GA-based algorithm. Furthermore, by comparing the performance of the newly proposed algorithm with the one proposed in [1], more insights have been obtained in terms of the tradeoff among QoS provisioning for RT traffic, throughput maximization for NRT traffic, and time complexity of an algorithm for resource allocation in a multihop network such as CMN.

Long-Term Performance Evaluation of Scheduling Disciplines in OFDMA Multi-Rate Video Multicast Transmission (OFDMA 다중률 비디오 멀티캐스트 전송에서 스케줄링 방식의 장기적 성능 평가)

  • Hong, Jin Pyo;Han, Minkyu
    • Journal of KIISE
    • /
    • v.43 no.2
    • /
    • pp.246-255
    • /
    • 2016
  • The orthogonal frequency-division multiple access (OFDMA) systems are well suited to multi-rate multicast transmission, as they allow flexible resource allocation across both frequency and time, and provide adaptive modulation and coding schemes. Unlike layered video coding, the multiple description coding (MDC) enables flexible decomposition of the raw video stream into two or more substreams. The quality of the video stream is expected to be roughly proportional to data rate sustained by the receiver. This paper describes a mathematical model of resource allocation and throughput in the multi-rate video multicast for the OFDMA wireless and mobile networks. The impact on mean opinion score (MOS), as a measurement of user-perceived quality (by employing a variety of scheduling disciplines) is discussed in terms of utility maximization and proportional fairness. We propose a pruning algorithm to ensure a minimum video quality even for a subset of users at the resource limitation, and show the optimal number of substreams and their rates can sustain.

Resource Allocation Scheme in an Integrated CDMA System Using Throughput Maximization Strategy (통합된 CDMA시스템에서 데이터 전송률 최대화 방법을 이용한 자원할당 방법)

  • Choi Seung-Sik;Kim Sang-Kyung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.2B
    • /
    • pp.146-153
    • /
    • 2006
  • It is required to have researches on efficient resource allocation schemes in an integrated voice and data CDMA system with the spreading of high-speed wireless internets. In this paper, we proposed a efficient resouce allocation scheme for providing a high speed data service in an integrated CDMA system. In an integrated voice/data CDMA system, resources for voice users are allocated with high priority and residual resources are allocated to the data service. In this case, it is necessary to use a resource allocation scheme for minimizing interference. In this paper, we first explain about a interference minimizing method and define QoS requirements. Based on the method, we proposed a efficient resource allocation scheme which satisfy the QoS requirements. The proposed scheme controls the transmission rate and delay of data users with a priority information such as the number of packets in a queue. From the simulation results, we show that the proposed scheme reduce the blocking probability and delay and improve the performance.