• 제목/요약/키워드: Through-the-wall radar

검색결과 11건 처리시간 0.018초

An impulse radio (IR) radar SoC for through-the-wall human-detection applications

  • Park, Piljae;Kim, Sungdo;Koo, Bontae
    • ETRI Journal
    • /
    • 제42권4호
    • /
    • pp.480-490
    • /
    • 2020
  • More than 42 000 fires occur nationwide and cause over 2500 casualties every year. There is a lack of specialized equipment, and rescue operations are conducted with a minimal number of apparatuses. Through-the-wall radars (TTWRs) can improve the rescue efficiency, particularly under limited visibility due to smoke, walls, and collapsed debris. To overcome detection challenges and maintain a small-form factor, a TTWR system-on-chip (SoC) and its architecture have been proposed. Additive reception based on coherent clocks and reconfigurability can fulfill the TTWR demands. A clock-based single-chip infrared radar transceiver with embedded control logic is implemented using a 130-nm complementary metal oxide semiconductor. Clock signals drive the radar operation. Signal-to-noise ratio enhancements are achieved using the repetitive coherent clock schemes. The hand-held prototype radar that uses the TTWR SoC operates in real time, allowing seamless data capture, processing, and display of the target information. The prototype is tested under various pseudo-disaster conditions. The test standards and methods, developed along with the system, are also presented.

A Dual-Band Through-the-Wall Imaging Radar Receiver Using a Reconfigurable High-Pass Filter

  • Kim, Duksoo;Kim, Byungjoon;Nam, Sangwook
    • Journal of electromagnetic engineering and science
    • /
    • 제16권3호
    • /
    • pp.164-168
    • /
    • 2016
  • A dual-band through-the-wall imaging radar receiver for a frequency-modulated continuous-wave radar system was designed and fabricated. The operating frequency bands of the receiver are S-band (2-4 GHz) and X-band (8-12 GHz). If the target is behind a wall, wall-reflected waves are rejected by a reconfigurable $G_m-C$ high-pass filter. The filter is designed using a high-order admittance synthesis method, and consists of transconductor circuits and capacitors. The cutoff frequency of the filter can be tuned by changing the reference current. The receiver system is fabricated on a printed circuit board using commercial devices. Measurements show 44.3 dB gain and 3.7 dB noise figure for the S-band input, and 58 dB gain and 3.02 dB noise figure for the X-band input. The cutoff frequency of the filter can be tuned from 0.7 MHz to 2.4 MHz.

Detection of Breathing Rates in Through-wall UWB Radar Utilizing JTFA

  • Liang, Xiaolin;Jiang, Yongling
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권11호
    • /
    • pp.5527-5545
    • /
    • 2019
  • Through-wall ultra-wide band (UWB) radar has been considered as one of the preferred and non-contact technologies for the targets detection owing to the better time resolution and stronger penetration. The high time resolution is a result of a larger of bandwidth of the employed UWB pulses from the radar system, which is a useful tool to separate multiple targets in complex environment. The article emphasised on human subject localization and detection. Human subject usually can be detected via extracting the weak respiratory signals of human subjects remotely. Meanwhile, the range between the detection object and radar is also acquired from the 2D range-frequency matrix. However, it is a challenging task to extract human respiratory signals owing to the low signal to clutter ratio. To improve the feasibility of human respiratory signals detection, a new method is developed via analysing the standard deviation based kurtosis of the collected pulses, which are modulated by human respiratory movements in slow time. The range between radar and the detection target is estimated using joint time-frequency analysis (JTFA) of the analysed characteristics, which provides a novel preliminary signature for life detection. The breathing rates are obtained using the proposed accumulation method in time and frequency domain, respectively. The proposed method is validated and proved numerically and experimentally.

Target-to-Clutter Ratio Enhancement of Images in Through-the-Wall Radar Using a Radiation Pattern-Based Delayed-Sum Algorithm

  • Lim, Youngjoon;Nam, Sangwook
    • Journal of electromagnetic engineering and science
    • /
    • 제14권4호
    • /
    • pp.405-410
    • /
    • 2014
  • In this paper, we compare the quality of images reconstructed by a conventional delayed-sum (DS) algorithm and radiation pattern-based DS algorithm. In order to evaluate the quality of images, we apply the target-to-clutter ratio (TCR), which is commonly used in synthetic aperture radar (SAR) image assessment. The radiation pattern-based DS algorithm enhances the TCR of the image by focusing the target signals and preventing contamination of the radar scene. We first consider synthetic data obtained through GprMax2D/3D, a finite-difference time-domain (FDTD) forward solver. Experimental data of a 2-GHz bandwidth stepped-frequency signal are collected using a vector network analyzer (VNA) in an anechoic chamber setup. The radiation pattern-based DS algorithm shows a 6.7-dB higher TCR compared to the conventional DS algorithm.

잡음 신호를 이용한 바이스태틱 벽 투과 영상 레이더 연구 (A Study of Bi-Static Through-Wall Imaging Radar Using a Noise Waveform)

  • 하종수;조병래;선선구;이종민;조규공
    • 한국전자파학회논문지
    • /
    • 제24권6호
    • /
    • pp.654-660
    • /
    • 2013
  • 본 논문에서는 벽 뒤의 표적을 탐지하기 위한 영상화 기법을 연구한다. 벽에 의한 강한 반사 신호와 벽 뒤의 난반사 신호로부터 정확한 표적 정보를 획득하기 위해 잡음 신호를 이용하는 바이스태틱 벽 투과 영상 레이더의 연구 가능성을 제안하고, 획득 신호를 영상화하는 기법을 설명한다. 제안하는 연구의 도출 과정을 제시하며 실험 결과를 분석함으로써 제안하는 연구의 가능성을 검증한다.

Multipath Ghosts in Through-the-Wall Radar Imaging: Challenges and Solutions

  • Abdalla, Abdi T.;Alkhodary, Mohammad T.;Muqaibel, Ali H.
    • ETRI Journal
    • /
    • 제40권3호
    • /
    • pp.376-388
    • /
    • 2018
  • In through-the-wall radar imaging (TWRI), the presence of front and side walls causes multipath propagation, which creates fake targets called multipath ghosts. They populate the scene and reduce the probability of correct target detection, classification, and localization. In modern TWRI, specular multipath exploitation has received considerable attention for reducing the effects of multipath ghosts. However, this exploitation is challenged by the requirements of the reflecting geometry, which is not always available. Currently, the demand for a high radar image resolution dictates the use of a large aperture and wide bandwidth. This results in a large amount of data. To tackle this problem, compressive sensing (CS) is applied to TWRI. With CS, only a fraction of the data are used to produce a high-quality image, provided that the scene is sparse. However, owing to multipath ghosts, the scene sparsity is highly deteriorated; hence, the performance of the CS algorithms is compromised. This paper presents and discusses the adverse effects of multipath ghosts in TWRI. It describes the physical formation of ghosts, their challenges, and existing suppression techniques.

Time-Delay and Amplitude Modified BP Imaging Algorithm of Multiple Targets for UWB Through-the-Wall Radar Imaging

  • Zhang, Huamei;Li, Dongdong;Zhao, Jinlong;Wang, Haitao
    • Journal of Information Processing Systems
    • /
    • 제13권4호
    • /
    • pp.677-688
    • /
    • 2017
  • In order to solve the undetected probability of multiple targets in ultra-wideband (UWB) through-the-wall radar imaging (TWRI), a time-delay and amplitude modified back projection (BP) algorithm is proposed. The refraction point is found by Fermat's principle in the presence of a wall, and the time-delay is correctly compensated. On this basis, transmission loss of the electromagnetic wave, the absorption loss of the refraction wave, and the diffusion loss of the spherical wave are analyzed in detail. Amplitude compensation is deduced and tested on a model with a single-layer wall. The simulating results by finite difference time domain (FDTD) show that it is effective in increasing the scattering intensity of the targets behind the wall. Compensation for the diffusion loss in the spherical wave also plays a main role. Additionally, the two-layer wall model is simulated. Then, the calculating time and the imaging quality are compared between a single-layer wall model and a two-layer wall model. The results illustrate the performance of the time-delay and amplitude-modified BP algorithm with multiple targets and multiple-layer walls of UWB TWRI.

An Analysis of 2D Positional Accuracy of Human Bodies Detection Using the Movement of Mono-UWB Radar

  • Kiasari, Mohammad Ahangar;Na, Seung You;Kim, Jin Young
    • 센서학회지
    • /
    • 제23권3호
    • /
    • pp.149-157
    • /
    • 2014
  • This paper considers the ability of counting and positioning multi-targets by using a mobile UWB radar device. After a background subtraction process, distinguishing between clutters and human body signals, the position of targets will be computed using weighted Gaussian mixture methods. While computer vision offers many advantages, it has limited performance in poor visibility conditions (e.g., at night, haze, fog or smoke). UWB radar can provide a complementary technology for detecting and tracking humans, particularly in poor visibility or through-wall conditions. As we know, for 2D measurement, one method is the use of at least two receiver antennas. Another method is the use of one mobile radar receiver. This paper tried to investigate the position detection of the stationary human body using the movement of one UWB radar module.

Feasibility test on EDZ detection by using borehole radar survey

  • 조성준;김정호;손정술;김창렬;성낙훈
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 한국지구물리탐사학회 2006년도 공동학술대회 논문집
    • /
    • pp.239-244
    • /
    • 2006
  • 현재 건설중인 한국원자력 연구소 내의 지하 처분 연구시설에서 발파에 의한 터널 굴착 중 발생하는 손상대를 모니터링 하기 위해 시추공 레이다 반사법 탐사를 수행하였다. 60m 길이의 진입 터널이 완성되고 끝단에 쉘터가 만들어진 뒤 쉘터로부터 길이 35 m의 수평 시추공을 뚫어 터널 굴착에 따른 손상대 모니터링을 위한 관측공으로 사용하였다. 시추공은 굴착터널로부터 5.5 m 떨어져 있으며, $2{\sim}4$일 간격으로 5회 실험을 실시하였다. 터널의 굴착에 따른 터널면에서의 반사가 가장 강력한 반사면으로 작용하였으며, 서로 다른 날짜의 자료의 비교를 통해 터널 굴착면에 인접한 반사면의 변화를 감지 하였으며 이는 균열대의 생성과 암반 강도의 저하에 의한 것으로 여겨 졌으며 손상대로 평가되었다.

  • PDF

무인수상정의 RCS 해석 및 감소 방법에 대한 연구 (A Study on the RCS Analysis and Reduction Method of Unmanned Surface Vehicles)

  • 한민석;유재관;홍순국
    • 한국정보전자통신기술학회논문지
    • /
    • 제12권4호
    • /
    • pp.425-433
    • /
    • 2019
  • 본 논문에서는 10m급 무인수상정의 RCS 해석과 함께 RCS 증가 요인을 분석하고 RCS 감소 방안을 도출하였다. 기하학적 형상을 변형시키는 성형기법을 통해 레이다 단면적을 감소시킬 수 있고, 이것을 스텔스 무인수상정 개발에 활용할 수 있음을 확인한다. RCS 감소를 위해 기존의 Top Mast 부분을 함미부분으로 1m 이동시키고 경사각 5도를 준 후 0.5 m 아래로 이동시킨 다음 중앙과 주변 반사 구조물에 대한 영향을 최소화시키기 위해 주변에 Guided Wall을 추가 설치하였다. 기존 모델과의 RCS 해석 값을 비교 분석한 결과 모든 고각에 대해 감소 대책이 적용된 모델이 기존 모델보다 -3.79 dB 이상 낮아진 것을 알 수 있으며, 최대 대푯값은 기존 모델 고각 0도의 12.74 dB에서 6.32 dB로 낮아졌다. 특히, 희생각 영역을 제외한 영역에서 강한 산란 현상이 상당부분 제거된 것을 확인할 수 있다. 또한, Guide wall을 추가한 -5m ~ 2 m 부분의 경우 반사되는 신호가 최대 20 ~ 40 dB 이상 개선되어 2D ISAR 영상에 나타나지 않는 것을 알 수 있다. 무인수상정 RCS 분석은 거리방향 프로파일 분석과 ISAR 영상 분석을 통해 문제 위치를 분석, 식별하는 과정을 설명하였으며, 그에 대한 문제를 해결할 수 있는 RCS 감소 방안을 함께 제시하였다.