• Title/Summary/Keyword: Throttling

Search Result 76, Processing Time 0.024 seconds

An Experimental Study on Thermal Regeneration of Filter Trap by Diesel Engine Performance and Characteristics of Exhaust Pipe (디젤기관의 성능과 배기관 특성에 의한 필터트랩의 열재생에 관한 실험적 연구)

  • 오용석
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.8 no.2
    • /
    • pp.50-55
    • /
    • 1999
  • The exhaust emissions from diesel vehicle are known to be harmful to human health and environment. Recently, one of the most environment problems is particulate matter. In this study, through the actual exper iment and heat transfer of exhaust pipe in light duty diesel engine equipped with the ceramic filter trap of throttling type, following results are obtained. 1. In case of light duty diesel engine equipped with ceramic filter trap of throttling type, Power and torque of engine were decreased about 5%, compared with the case without trap system. It means that was not so much effect on base engine performance.2. If the length of exhaust pipe when equipping with ceramic filter trap is suitably controlled, the range of regeneration will be expand much more.3. Particulate matter reduction efficiency of ceramic filter trap system was about 70%-80%, so it was proved a good system to reduce particulate matter.In experiment, test was conducted to estimate engine emission in 2,476cc light duty diesel engine which was equipped with ceramic filter trap.

  • PDF

The Leakage and Rotordynamic Analysis of A Combination-Type-Staggered-Labyrinth Seal for A Steam Turbine (스팀 터빈용 조합형 엇갈린 래버린스 실의 누설량 및 동특성 해석)

  • Ha, Tae-Woong;Lee, Yong-Bok;Kim, Seung-Jong;Kim, Chang-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.7 no.6 s.27
    • /
    • pp.45-54
    • /
    • 2004
  • Governing equations and numerical solution methods are derived for the analysis of a combination-type-staggered-labyrinth seal used in high performance steam turbines. A bulk flow is assumed for each combination-type-staggered-labyrinth cavity. Axial flow through a throttling labyrinth strip is determined by Neumann's leakage equation and circumferential flow is assumed to be completely turbulent in the labyrinth cavity. Moody's wall-friction-factor formula is used for the calculation of wall shear stresses. For the reaction force developed by the seal, linearized zeroth-order and first-order perturbation equations are developed for small motion near the centered position. Integration of the resultant first-order pressure distribution along and around the seal defines the rotordynamic coefficients of the combination-type-staggered-labyrinth seal. Theoretical results of leakage and rotordynamic characteristics for the IP4-stage seal of USC (ultra super critical) steam turbine are shown with the effect of sump pressure, the number of throttling labyrinth strip, and rotor speed.

Simulation Study on the Performance Characteristics of a $CO_2$ Cooling System with an Expander (팽창기를 적용한 이산화탄소 냉방시스템의 성능특성에 관한 해석적 연구)

  • Cho, Hong-Hyun;Baek, Chang-Hyun;Ryu, Chang-Gi;Kim, Yong-Chan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.9
    • /
    • pp.630-639
    • /
    • 2007
  • A $CO_2$ cycle shows large throttling loss during the expansion process. The application of an expander into the $CO_2$ cycle can reduce the throttling loss and then improve system performance. In this study, the performance of a transcritical $CO_2$ cycle with an expander was analytically investigated in order to improve the cooling performance of the system. The expander was applied to the single-stage and two-stage compression cycles. The performance was analyzed with the variations of compressor frequency, outdoor temperature, and expander efficiency. The single-stage and two-stage compression cycles with the expander showed COP improvement of 25% and 32%, respectively, over the single-stage cycle with an EEV.

Comparison of Exhaust Gas Recirculation and Excess Air Strategies for Improving Thermal Efficiency and Reducing Nitrogen Oxides emissions in Hydrogen Spark-ignition Engines at Low-load Operation (수소 스파크점화 엔진의 저부하 운전에서 열효율 및 질소산화물 배출 개선을 위한 배기가스재순환과 과잉공기 전략 비교)

  • Hyunwook Park;Junsun Lee;Seungmook Oh;Yonggyu Lee;Changup Kim
    • Journal of ILASS-Korea
    • /
    • v.29 no.2
    • /
    • pp.60-67
    • /
    • 2024
  • This study compared exhaust gas recirculation (EGR) and excess air strategies for improving thermal efficiency and emissions of hydrogen combustion engines at low-load operation. The experimental investigation was conducted in a single-cylinder, heavy-duty engine under throttling and wide-open throttle (WOT) conditions. Although both EGR and excess air strategies reduced peak heat release rates and increased combustion durations, the net indicated thermal efficiencies were improved by reducing the pumping losses. Under the constraint of similar nitrogen oxides emissions, the EGR strategy had higher net indicated thermal efficiencies compared to the excess air strategy in throttling operation. However, the difference between their thermal efficiencies was reduced under WOT condition. The trend of reducing nitrogen oxides emissions according to the two strategies was similar.

Effect of inlet throttling on thermohydraulic instability in a large scale water-based RCCS: A system-level analysis with RELAP5-3D

  • Zhiee Jhia Ooi;Qiuping Lv;Rui Hu;Matthew Jasica;Darius Lisowski
    • Nuclear Engineering and Technology
    • /
    • v.56 no.5
    • /
    • pp.1902-1912
    • /
    • 2024
  • This paper presents results from system-level modeling of a water-based reactor cavity cooling system using RELAP5-3D. The computational model is benchmarked with experimental data from a half-scale RCCS test facility at Argonne National Laboratory. The model prediction is first compared with a two-phase oscillatory baseline experimental case where mixed accuracy is obtained. The model shows reasonable prediction of mass flow rate, pressure, and temperature but significant overprediction of void fraction. The model prediction is then compared with a fault case where the inlet of the risers is gradually reduced using a throttling valve. As the valve is closed, the model is able to predict some major flow phenomena observed in the experiment such as the dampening of oscillations, the reintroduction of oscillations, as well as boiling, flashing, and geysering in the risers. However, the timeline of these events are not well captured by the model. The model is also used to investigate the evolution of flow regime in the chimney. This work highlights that the semi-empirical constitutive relations used in RELAP-3D could have a strong influence on the accuracy of the model in two-phase oscillatory flows.

TWO REMARKS ON THE GAME OF COPS AND ROBBERS

  • Shitov, Yaroslav
    • Bulletin of the Korean Mathematical Society
    • /
    • v.57 no.1
    • /
    • pp.127-131
    • /
    • 2020
  • We discuss two unrelated topics regarding Cops and Robbers, a well-known pursuit-evasion game played on a simple graph. First, we address a recent question of Breen et al. and prove the PSPACE-completeness of the cop throttling number, that is, the minimal possible sum of the number k of cops and the number capt(k) of moves that the robber can survive against k cops under the optimal play of both sides. Secondly, we revisit a teleporting version of the game due to Wagner; we disprove one of his conjectures and suggest a new related research problem.

운영체제 레벨의 DFS에 기반하는 온도를 고려한 스케줄링

  • Chung Sung-Woo
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.06a
    • /
    • pp.208-210
    • /
    • 2006
  • 프로세서의 온도를 낮추기 위한 컴퓨터 과학적 접근법으로는 가변전압주파수조절(DVFS), 파이프라인에서 더 이상 명령어를 수행하지 못하게 하는 방법(pipeline throttling) 등이 있다. 하지만, 이러한 해결책은 대부분 소수의 은도 센서가 내장되어 있어 이를 기반으로 온도를 제어하였다. 본 논문에서는 실제 Pentium 4에 기반한 시스템을 통하여, 운영체제 레벨의 가변주파수방법(DFS)을 이용한 스케줄링이 여러 개의 온도센서를 사용하여 국지화된 뜨거운 부분(localized hotspot)을 얼마나 효율적으로 온도를 제어할 수 있는지를 보여준다.

  • PDF

Experimental study on the spray characteristics of a dual-manifold liquid-centered swirl coaxial injector

  • Lee, Ingyu;Yoon, Jungsoo;Park, Gujeong;Yoon, Youngbin
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.15 no.4
    • /
    • pp.444-453
    • /
    • 2014
  • A throttleable rocket engine enables operational possibilities such as the docking of spacecraft, maneuvering in a certain orbit and landing on a planet's surface, altitude control, and entrance to atmosphere-less planets. Thus, throttling methods have long been researched. However, dual-manifold injectors, which represent one throttling method, have been investigated less than others. In this study, dual-manifold and single-manifold injectors were compared to determine the characteristics of dual-manifold injectors. Also, the effects of gas injection were investigated with various F/O ratios. To investigate the characteristics, mass flow rate, spray pattern, spray angle, and droplet size were measured. The spray angle and droplet size were captured by indirect photography. About 30 images were taken to assess the spray patterns and spray angle. Also, 700 images were analyzed to understand the droplet distribution and targeting area, moving to the right from the centerline with 1.11-cm intervals. The droplet size was obtained from an image processing procedure. From the results, the spray angle showed two transition regions, due to swirl momentum in the swirl chamber regardless of the F/O ratio. The droplet size showed similar trends in both dual-manifold and single-manifold injectors except in the low mass flow rate region. In the case of the dual- manifold injector, the spray cone was not fully developed in the low mass flow rate region due to low angular momentum in the swirl chamber.

Effects of Intake and Exhaust Valve Timing on Combustion and Emission Characteristics of Lean-Burn Direct-Injection LPG Engine (직접분사식 희박연소 LPG엔진에서 흡배기 밸브시기가 연소 및 배기특성에 미치는 영향)

  • Park, Cheolwoong;Kim, Taeyoung;Cho, Seehyoen;Oh, Seungmook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.1
    • /
    • pp.45-51
    • /
    • 2015
  • In order to meet the enforced emission regulations and reduce fuel consumption, various new technologies are employed in engines. The problem of NOx emissions under a lean mixture condition should be solved, because a lean-burn direct-injection engine can realize stable lean combustion with a stratified mixture, which results in improvements in fuel economy and emissions. This study investigated the effects of intake and exhaust valve timing changes on the performance and emission characteristics of a lean-burn LPG direct-injection engine. Under a partial-load operating condition without throttling, an increase in the intake valve opening led to an increase in NOx emissions due to an increase in the amount of excess air. The fuel consumption deteriorated with an increase in the exhaust valve opening due to a decrease in the expansion work and an increase in the pumping loss.