• Title/Summary/Keyword: Threshold wind speed

Search Result 31, Processing Time 0.016 seconds

Evapotranspiration of Soybean-Barley Cropping as a Function of Evaporation and Available Soil Water in the Root Zone (콩 보리 작부체계하(作付體系下)에서 대기증발요구(大氣蒸發要求) 및 토양수분(土壤水分)의 함수(函數)로서의 증발산량(蒸發散量))

  • Im, Jeong-Nam;Jung, Yeong-Sang;Ryu, Kwan-Shig;Yoo, Sun-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.15 no.4
    • /
    • pp.213-220
    • /
    • 1982
  • Soil water changes in lysimeters with four different soils and two different available soil depths were monitored during the growing seasons of the soybean-barley cropping from 1977 to 1980 in Suweon to evaluate evapotranspiration (ET) as a function of available soil water and evaporative demand of the atmosphere. ET was calculated with soil water profile and water balance. Soil water content was measured with a neutron moisture depth gauage and The evaporative demand of the atmosphere was estimated with a class A pan evaporation. Rainfall. solar radiation, and wind speed were observed to examine heat and water balances. The average ET of soybeans ranged from 1.6 mm/day at seedling to 6.5 mm/day at flowering, and that of barley ranged from 0.5 mm/day at the regrowth stage to 4.6 mm/day at heading; however, a large variability was observed. The ratio of ET to pan evaporation ($ET/E_o$) ranged from 0.5 to 1.1 for soybeans and 0.4 to 1.2 for barley. The soil evaporation factor ($K_e$) of the $ET/E_o$ component decreased as the soil water depleted and the canopy developed. The crop transpiration factor ($K_t$), another component of $ET/E_o$, also was a function of time and the soil water. $K_t$ was constant when the available soil water fraction (f) in the root zone was greater than a threshold value, and $K_e$ was decreased linearly when f was lower than this threshold. The threshold was 0.7 for the moderate evaporative demand days, 0.4 to 0.5 for the low evaporative demand days, and 0.9 to 0.96 for the high evaporative demand days. Conclusively, the ET can be estimated from the evaporative demand of the atmosphere, $E_o$, $K_e$ and $K_t$, and the available soil water content in the root zone.

  • PDF