• Title/Summary/Keyword: Threshold voltage shift

Search Result 191, Processing Time 0.032 seconds

Design of Novel 1 Transistor Phase Change Memory

  • Kim, Jooyeon;Kim, Byungcheul
    • Transactions on Electrical and Electronic Materials
    • /
    • v.15 no.1
    • /
    • pp.37-40
    • /
    • 2014
  • A novel memory is reported, in which $Ge_2Sb_2Te_5$ (GST) has been used as a floating gate. The threshold voltage was shifted due to the phase transition of the GST layer, and the hysteretic behavior is opposite to that arising from charge trapping. Finite Element Modeling (FEM) was adapted, and a new simulation program was developed using c-interpreter, in order to analyze the small shift of threshold voltage. The results show that GST undergoes a partial phase transformation during the process of RESET or SET operation. A large $V_{TH}$ shift was observed when the thickness of the GST layer was scaled down from 50 nm to 25 nm. The novel 1 transistor PCM (1TPCM) can achieve a faster write time, maintaining a smaller cell size.

Hot-Carrier-Induced Degradation in Submicron MOS Transistors (Submicron MOS 트랜지스터의 뜨거운 운반자에 의한 노쇠현상)

  • 최병진;강광남
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.25 no.7
    • /
    • pp.780-790
    • /
    • 1988
  • We have studied the hot-carrier-induced degradation caused by the high channel electric field due to the decrease of the gate length of MOSFET used in VLSI. Under DC stress, the condition in which maximum substrate current occures gave the worst degradation. Under AC dynamic stress, other conditions, the pulse shape and the falling rate, gave enormous effects on the degradation phenomena, especially at 77K. Threshold voltage, transconductance, channel conductance and gate current were measured and compared under various stress conditions. The threshold voltage was almost completely recovered by hot-injection stress as a reverse-stress. But, the transconductance was rapidly degraded under hot-hole injection and recovered by sequential hot-electron stress. The Si-SiO2 interface state density was analyzed by a charge pumping technique and the charge pumping current showed the same trend as the threshold voltage shift in degradation process.

  • PDF

Electrical Applications of OTFTs

  • Kim, Seong-Hyun;Koo, Jae-Bon;Lim, Sang-Chul;Ku, Chan-Hoi;Lee, Jung-Hun;Zyung, Tae-Hyoung
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.170-170
    • /
    • 2006
  • [ ${\pi}-conjugated$ ] organic and polymeric semiconductors are receiving considerable attention because of their suitability as an active layer for electronic devices. An organic inverter with a full swing and a high gain can be obtained through the good qualities of the transfer characteristics of organic thin-film transistors (OTFTs); for example, a low leakage current, a threshold voltage ($V_{th}$) close to 0 V, and a low sub-threshold swing. One of the most critical problems with traditional organic inverters is the high operating voltage, which is often greater than 20 V. The high operating voltage may result in not only high power consumption but also device instabilities such as hysteresis and a shift of $V_{th}$ during operation. In this paper, low-voltage and little-hysteresis pentacene OTFTs and inverters in conjunction with PEALD $Al_{2}O_{3}\;and\;ZrO_{2}$ as the gate dielectrics are demonstrated and the relationships between the transfer characteristics of OTFT and the voltage transfer characteristics (VTCs) of inverter are investigated.

  • PDF

A 3-cell CCI(Cell-to-Cell Interference) model and error correction algorithm for Multi-level cell NAND Flash Memories (다중셀 낸드 플래시 메모리의 3셀 CCI 모델과 이를 이용한 에러 정정 알고리듬)

  • Jung, Jin-Ho;Kim, Shi-Ho
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.10
    • /
    • pp.25-32
    • /
    • 2011
  • We have analyzed adjacent cell dependency of threshold voltage shift caused by the cell to cell interference, and we proposed a 3-adjacent-cell model to model the pattern dependency of the threshold voltage shift. The proposed algorithm is verified by using MATLAB simulation and measurement results. In the experimental results, we found that accuracy of the proposed simple 3-adjacient-cell model is comparable to the widely used conventional 8-adjacient-cell model. The Bit Error Rate (BER) of LSB and of MSB is improved by 28.9% and 19.8%, respectively, by applying the proposed algorithm based on 3-adjacent-cell model to 20nm-class 2-bit MLC NAND flash memories.

Device Coupling Effects of Monolithic 3D Inverters

  • Yu, Yun Seop;Lim, Sung Kyu
    • Journal of information and communication convergence engineering
    • /
    • v.14 no.1
    • /
    • pp.40-44
    • /
    • 2016
  • The device coupling between the stacked top/bottom field-effect transistors (FETs) in two types of monolithic 3D inverter (M3INV) with/without a metal layer in the bottom tier is investigated, and then the regime of the thickness TILD and dielectric constant εr of the inter-layer distance (ILD), the doping concentration Nd (Na), and length Lg of the channel, and the side-wall length LSW where the stacked FETs are coupled are studied. When Nd (Na) < 1016 cm-3 and LSW < 20 nm, the threshold voltage shift of the top FET varies almost constantly by the gate voltage of the bottom FET, but when Nd (Na) > 1016 cm-3 or LSW > 20 nm, the shift decreases and increases, respectively. M3INVs with TILD ≥ 50 nm and εr ≤ 3.9 can neglect the interaction between the stacked FETs, but when TILD or εr do not meet the above conditions, the interaction must be taken into consideration.

Memory characteristics of p-type Si nanowire - Au nanoparticles nano floating gate memory device (P형 실리콘 나노선과 Au 나노입자를 이용한 나노플로팅게이트 메모리소자의 전기적 특성 분석)

  • Yoon, Chang-Joon;Yeom, Dong-Hyuk;Kang, Jeong-Min;Jeong, Dong-Young;Kim, Sang-Sig
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1226-1227
    • /
    • 2008
  • In this study, a single p-type Si nanowire - Au nanoparticles nano floating gate memory (NFGM) device is successfully fabricated and characterized their memory effects by comparison of electrical characteristics of p-type Si nanowire-based field effect transistor (FET) devices with Au nanoparticles embedded in the $Al_2O_3$ gate materials and without the Au nanoparticles. Drain current versus gate voltage ($I_{DS}-V_{GS}$) characteristics of a single p-type Si nanowire - Au nanoparticle NFGM device show counterclockwise hysteresis loops with the threshold voltage shift of ${\Delta}V_{th}$= 3.0 V. However, p-type Si nanowire based top-gate device without Au nanoparticles does not exhibit a threshold voltage shift. This behavior is ascribed to the presence of the Au nanoparticles, and is indicative of the trapping and emission of electrons in the Au nanoparticles.

  • PDF

The Characterizing Analysis of a Buried-Channel MOSFET based on the 3-D Numerical Simulation

  • Kim, Man-Ho;Kim, Jong-Soo
    • Journal of Electrical Engineering and Technology
    • /
    • v.2 no.2
    • /
    • pp.267-273
    • /
    • 2007
  • A depletion-mode MOSFET has been analyzed to evaluate its electrical behavior using a novel 3-D numerical simulation package. The characterizing analysis of the BC MOSFET was performed through short-channel narrow-channel and small-geometry effects that are investigated, in detail, in terms of the threshold voltage. The DIBL effect becomes significant for a short-channel device with a channel length of $<\;3({\mu}m)$. For narrow-channel devices the variation of the threshold voltage was sharp for $<4({\mu}m)$ due to the strong narrow-channel effect. In the case of small-geometry devices, the shift of the threshold voltage was less sensitive due to the combination of the DIBL and substrate bias effects, as compared with that observed from the short-channel and narrow-channel devices. The characterizing analysis of the narrow-channel and small-geometry devices, especially with channel width of $<\;4({\mu}m)$ and channel area of $<\;4{\times}4({\mu}m^2)$ respectively, can be accurately performed only from a 3-D numerical simulation due to their sharp variations in threshold voltages.

A New Analog Switch CMOS Charge Pump Circuit without Body Effect

  • Parnklang, Jirawath;Manusphrom, Ampual;Laowanichpong, Nut;Tongnoi, Narongchai
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.212-214
    • /
    • 2005
  • The charge-pump circuit which is used to generate higher voltage than the available supply voltage has wide applications such as the flash memory of EEPROM Because the demand for high voltage comes from physical mechanism such as the oxide tunneling, the required pumped voltage cannot be scaled as the power supply voltage is scaled. Therefore, an efficient charge-pump circuit that can achieve high voltage from the available low supply voltage is essential. A new Analog Switch p-well CMOS charge pump circuit without the MOS device body effect is processed. By improve the structure of the circuit's transistors to reduce the threshold voltage shift of the devices, the threshold voltage of the device is kept constant. So, the circuit electrical characteristics are higher output voltage within a shorter time than the conventional charge pump. The propose analog switch CMOS charge pump shows compatible performance of the ideal diode or Dickson charge pump.

  • PDF

Interface Trap Effects on the Output Characteristics of GaN Schottky Barrier MOSFET (GaN Schottky Barrier MOSFET의 출력 전류에 대한 계면 트랩의 영향)

  • Park, Byeong-Jun;Kim, Han-Sol;Hahm, Sung-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.4
    • /
    • pp.271-277
    • /
    • 2022
  • We analyzed the effects of the interface trap on the output characteristics of an inversion mode n-channel GaN Schottky barrier (SB)-MOSFET based on the Nit distribution using TCAD simulation. As interface trap number density (Nit) increased, the threshold voltage increased while the drain current density decreased. Under Nit=5.0×1010 cm-2 condition, the threshold voltage was 3.2 V for VDS=1 V, and the drain current density reduced to 2.4 mA/mm relative to the non-trap condition. Regardless of the Nit distribution type, there was an increase in the subthreshold swing (SS) following an increase in Nit. Under U-shaped Nit distribution, it was confirmed that the SS varied depending on the gate voltage. The interface fixed charge (Qf) caused an shift in the threshold voltage and increased the off-state current collectively with the surface trap. In summary, GaN SB-MOSFET can be a building block for high power UV optoelectronic circuit provided the surface state is significantly reduced.

Electrical Characteristics of Organic Thin-film Transistors with Polyvinylpyrrolidone as a Gate Insulator

  • Choi, Jong-Sun
    • Journal of Information Display
    • /
    • v.9 no.4
    • /
    • pp.35-38
    • /
    • 2008
  • This paper reports the electrical characteristics of polyvinylpyrrolidone (PVPy) and the performance of organic thin-film transistors (OTFTs) with PVPy as a gate insulator. PVPy shows a dielectric constant of about 3 and contributes to the upright growth of pentacene molecules with $15.3\AA$ interplanar spacing. OTFT with PVPy exhibited a field-effect mobility of 0.23 $cm^2$/Vs in the saturation regime and a threshold voltage of -12.7 V. It is notable that there was hardly any threshold voltage shift in the gate voltage sweep direction. Based on this reliable evidence, PVPy is proposed as a new gate insulator for reliable and high-performance OTFTs.