• Title/Summary/Keyword: Three-zone model

Search Result 398, Processing Time 0.024 seconds

Design of Emergency Spillway Using Hydraulic and Numerical Model - ImHa Multipurpose Dam (수리모형실험과 수치모의를 이용한 비상여수로 설계-임하댐)

  • Jeon, Tae-Myoung;Kim, Hyung-Il;Park, Hyung-Seop;Baek, Un-Il
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.1726-1731
    • /
    • 2006
  • Hydraulic and numerical models were applied to design the emergency spillway of ImHa multipurpose Dam. For the numerical model, FLOW-3D was used to evaluate the three-dimensional flow in the spillway. The results of hydraulic model were compared with those of the numerical model which were separated into four zones such as approaching zone, weir zone, transition & tunnel chute zone, and dissipator zone. Moreover, for optimum design of the spillway, the hydraulic and numerical models were performed for the basic plan. Solving the problems of the basic plan, the optimized alternative design was proposed. The numerical models for various conditions of the spillway were performed, which is not always feasible in the hydraulic models. Verified by using the hydraulic models, the optimum alternative design was proposed.

  • PDF

Evaluation of seismic p-yp loops of pile-supported structures installed in saturated sand

  • Yun, Jungwon;Han, Jintae;Kim, Doyoon
    • Geomechanics and Engineering
    • /
    • v.30 no.6
    • /
    • pp.579-586
    • /
    • 2022
  • Pile-supported structures are installed on saturated sloping grounds, where the ground stiffness may decrease due to liquefaction during earthquakes. Thus, it is important to consider saturated sloping ground and pile interactions. In this study, we conduct a centrifuge test of a pile-supported structure, and analyze the p-yp loops, p-yp loops provide the correlation between the lateral pile deflection (yp) and lateral soil resistance (p). In the dry sand model (UV67), the p-yp loops stiffness increased as ground depth increased, and the p-yp loops stiffness was larger by approximately three times when the pile moved to the upslope direction, compared with when it moved to the downslope direction. In contrast, no significant difference was observed in the stiffness with the ground depth and pile moving direction in the saturated sand model (SV69). Furthermore, we identify the unstable zone based on the result of the lateral soil resistance (p). In the case of the SV69 model, the maximum depth of the unstable zone is five times larger than that of the dry sand model, and it was found that the saturated sand model was affected significantly by kinematic forces due to slope failure.

A Sensitivity Analysis on Numerical Grid Size of a Three-Dimensional Hydrodynamic and Water Quality Model (EFDC) for the Saemangeum Reservoir (새만금호 3차원 수리.수질모델(EFDC)의 수치격자 민감도 분석)

  • Jeon, Ji Hye;Chung, Se Woong
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.1
    • /
    • pp.26-37
    • /
    • 2012
  • Multi-dimensional hydrodynamic and water quality models are widely used to simulate the physical and biogeochemical processes in the surface water systems such as reservoirs and estuaries. Most of the models have adopted the Eulerian grid modeling framework, mainly because it can reasonably simulate physical dynamics and chemical species concentrations throughout the entire model domain. Determining the optimum grid cell size is important when using the Eulerian grid-based three-dimensional water quality models because the characteristics of species are assumed uniform in each of the grid cells and chemical species are represented by concentration (mass per volume). The objective of this study was to examine the effect of grid-size of a three dimensional hydrodynamic and water quality model (EFDC) on hydrodynamics and mass transport in the Saemangeum Reservoir. Three grid resolutions, respectively representing coarse (CG), medium (MG), and fine (FG) grid cell sizes, were used for a sensitivity analysis. The simulation results of numerical tracer showed that the grid resolution affects on the flow path, mass transport, and mixing zone of upstream inflow, and results in a bias of temporal and spatial distribution of the tracer. With the CG, in particular, the model overestimates diffusion in the mixing zone, and fails to identify the gradient of concentrations between the inflow and the ambient water.

An Investigation of Flow and Pollutant Dispersion in Three-Dimensional Asymmetric Street Canyons Using a CFD Model (CFD 모형을 이용한 3차원 비대칭 도로 협곡에서의 흐름 및 오염물질 분산 연구)

  • Park, Seung-Bu;Baik, Jong-Jin
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.23 no.2
    • /
    • pp.214-224
    • /
    • 2007
  • A three-dimensional computational fluid dynamics (CFD) model with the renormalization group (RNG) $k-{\varepsilon}$ turbulence model is used to examine the effects of difference in building height on flow and pollutant dispersion in asymmetric street canyons. Three numerical experiments with different street canyons formed by two isolated buildings are performed. In the experiment with equal building height, a portal vortex is formed in the street canyon and a typical recirculation zone is formed behind the downwind building. In the experiment with the downwind building being higher than the upwind building, the ambient flow comes into the street canyon at the front of the downwind building and incoming flow diverges strongly in the street canyon. Hence, pollutants released therein are strongly dispersed through the lateral sides of the street canyon. In the experiment with the upwind building being higher than the downwind building, a large recirculation zone is formed behind the upwind building, which is disturbed by the downwind building. Pollutants are weakly dispersed from the street canyon and the residue concentration ratio is largest among the three experiments. This study shows that the difference in upwind and downwind building height significantly influences flow and pollutant dispersion in and around the street canyon.

Fracture analysis of weld specimen using 3-dimensional finite element method (3차원 유한요소법을 이용한 용접시편의 파괴 해석)

  • Yang Seung-Yong;Goo Byeong-choon
    • Proceedings of the KSR Conference
    • /
    • 2005.05a
    • /
    • pp.385-390
    • /
    • 2005
  • A specimen with residual stress due to welding was analyzed by three-dimensional cohesive zone model. The residual stress distribution was calculated by simulating welding process, and cohesive elements were located along crack propagation planes. Crack growth is possible since two planes of the cohesive element are separated beyond a maximum load carrying capacity. Stress fields around a crack tip are compared for specimens with and without residual stresses. Load-displacement curves and crack growth behaviors are also examined.

  • PDF

A Study on Work-to-Home Trip Distribution Models Based on A Stochastic Equilibrium: A Consumer Welfare Approach (확률적 평행에 토대를 둔 Work-to-Home 통행배분모형 연구)

  • 이호병
    • Journal of Korean Society of Transportation
    • /
    • v.12 no.1
    • /
    • pp.43-54
    • /
    • 1994
  • The major concern of this paper is to investigate the properties of a stochastic equilibrium for each model system in terms of a consumer welfare measure. The primary assumption for this study is that a trip-maker would choose the trip from his origin zone which maximizes his personal welfare. This assumption, finally, leads to a singly constrained gravity model. The consumer welfare measure is derived from the concept of expected welfare of randomly sampled trip-makers. Each of the four different models considered in this paper is differentiated depending on the complexity of its model or the definition of its travel function. In this study, three different regions are chosen for the purpose of taking into account the effects of different zone-systems on the properties of a stochastic equilibrium : (i) Archerville region (5 zone) ; (ii) San Francisco Bay regions (30 zones) ; (iii) Houston, TX region (199 zones). It is concluded that almost identical, "global" consumer welfare values can be obtained in some cases of the gravity-type trip distribution models based on a stochastic equilibrium.

  • PDF

An Experimental and Numerical Study on Automotive IRDS Condenser (자동차용 IRDS 응축기에 대한 실험과 해석적 연구)

  • Kim, Hak-Jun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.1
    • /
    • pp.58-65
    • /
    • 2011
  • The specific objective of this study was to develop an IRDS (integrated receiver drier subcooling) condenser model for use in a mobile air-conditioning system. A three-zone model based on the desuperheating, two-phase, and subcooling sections of a condenser could be used to estimate the performance with a good accuracy. Overall heat transfer coefficients for each of the three sections, expressed as a function of the air velocity across the condenser and refrigerant mass flow rate and the model using the elemental difference method incorporate calculations to determine the pressure drop, heat performance within the condenser and it includes physical parameters (pass, tube hole size and length) that can be varied to analyze potential design changes without exhaustive experimental efforts. it was found that an accuracy of heat performance was within 5% in case of using the various condensers, the refrigerant pressure drop was predicted within 25% and the pressure drop of air side was well matched with experiment data within 4%.

Improvement and Performance Evaluation of Zone-based Registration in Mobile Communication Network (이동통신망에서 영역기준 위치등록 방법의 개선 및 성능평가)

  • Park, Jin-Won
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.34 no.2
    • /
    • pp.172-180
    • /
    • 2008
  • Many strategies have been proposed to reduce mobility management cost. Among them, in this paper, we study three schemes of zone-based registrationthat have been adopted by most of mobile systems. These special schemes are referred to as the single-zone-based registration (SZR), the two-zone-based registration (TZR) and the two-zone-based registration with outgoing call (TZRC) respectively. We propose a mathematical model to evaluate the performance of TZRC in order to compare with those of SZR and TZR. Numerical results show that TZRC outperforms not only SZR but also TZR in most cases.

A multi-phase model for predicting the effective chloride migration coefficient of ITZ in cement-based materials

  • Yang, C.C.;Weng, S.H.
    • Advances in concrete construction
    • /
    • v.1 no.3
    • /
    • pp.239-252
    • /
    • 2013
  • Mortar microstructure is considered as a three-phase composite material, which is cement paste, fine aggregate and interfacial transition zone. Interfacial transition zone is the weakest link between the cement paste and fine aggregate, so it has a significant role to determine the properties of cementitious composites. In this study, specimens (w/c = 0.35, 0.45, 0.55) with various volume fractions of fine aggregate ($V_f$ = 0, 0.1, 0.2, 0.3 and 0.4) were cast and tested. To predict the equivalent migration coefficient ($M_e$) and migration coefficient of interfacial transition zone ($M_{itz}$), double-inclusion method and Mori-Tanaka theory were used to estimate. There are two stages to estimate and calculate the thickness of interfacial transition zone (h) and migration coefficient of interfacial transition zone ($M_{itz}$). The first stage, the data of experimental chloride ion migration coefficient ($M_s$) was used to calculate the equivalent migration coefficient of fine aggregate with interfacial transition zone ($M_e$) by Mori-Tanaka theory. The second stage, the thickness of interfacial transition zone (h) and migration coefficient of interfacial transition zone ($M_{itz}$) was calculated by Hori and Nemat-Nasser's double inclusion model. Between the theoretical and experimental data a comparison was conducted to investigate the behavior of interfacial transition zone in mortar and the effect of interfacial transition zone on the chloride migration coefficient, the results indicated that the numerical simulations is derived to the $M_{itz}/M_m$ ratio is 2.11~8.28. Additionally, thickness of interfacial transition zone is predicted from $10{\mu}m$, 60 to $80{\mu}m$, 70 to $100{\mu}m$ and 90 to $130{\mu}m$ for SM30, M35, M45 and M55, respectively.

Long-term Ecological Research Programme in Forestry Research Institute, Korea

  • Oh, Jeong-Soo;Shin, Joon-Hwan;Lim, Jong-Hwan
    • The Korean Journal of Ecology
    • /
    • v.23 no.2
    • /
    • pp.131-134
    • /
    • 2000
  • Forest vegetation in Korea can be largely divided into warm temperate, cool temperate and frigid forest zone. The cool temperate forest zone of them occupies the largest part of the Korean peninsula and it is generally divided into three subdivisions such as northern, central and southern subzone. The Forestry Research Institute established three long-term ecological research sites at Kwangnung Experiment Forest in the central subzone of the cool temperate forest zone, at the Mt. Kyebangsan Forest in the northern subzone of the cool temperate forest zone. and at the Mt. Keumsan Forest in the warm temperate forest zone. The objectives of long-term ecological research in the Forestry Research Institute, Korea are to study long-term changes of the forest ecosystems in energy fluxes, water and nutrient cycling, forest stand structure, biological diversity, to quantify nutrient budgets and fluxes among forest ecosystem compartments and to integrate ecological data with a GIS - assisted model. To achieve the objectives, forest stand dynamics. environmental changes in soil properties, stream water quality, nutrient cycling, air pollution and biological diversity have been investigated and plant phonology as an indicator of climate change has been monitored in the LTER sites.

  • PDF