• Title/Summary/Keyword: Three-port dual-active-bridge (DAB) converter

Search Result 4, Processing Time 0.016 seconds

Decoupled Power Control of Three-port Dual Active Bridge DC-DC Converter for DC Microgrid Systems (DC 마이크로 그리드를 위한 Three-port Dual Active Bridge DC-DC 컨버터의 독립 전력 제어)

  • Sim, Ju-Young;Lee, Jun-Young;Choi, Hyun-Jun;Kim, Hak-Sun;Jung, Jee-Hoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.23 no.5
    • /
    • pp.366-372
    • /
    • 2018
  • Three-port dual-active bridge (DAB) converter in a DC microgrid was studied due to its high power density and cost-effectiveness. The other advantages of DAB include galvanic isolation and bidirectional power conversion capability using simple control modulation. The three-port DAB converter consists of a three winding transformer and three bridges. The transformer has three phases, which means that the ports are coupled. Thus, the three-port DAB converter causes unwanted power flows when the load connected to each port changes. The basic operational principles of the three-port DAB converter are presented in this study. The decoupling control strategy of the independent port power transfer is presented with a mathematical power model to overcome the unexpected power flow problem. The validity of the proposed analysis and control strategy is verified with PSIM simulation and experiments using a 1-kW prototype power converter.

Power Decoupled Multi-Port Dual-Active-Bridge Converter Employing Multiple Transformers for DC Distribution Applications (복수의 변압기를 사용하여 독립 전력제어가 가능한 DC 배전용 다중포트 Dual-Active-Bridge 컨버터)

  • Kim, Inhyeok;Sim, Ju-Young;Lee, Jun-Young;Jung, Jee-Hoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.4
    • /
    • pp.286-292
    • /
    • 2020
  • This study proposes a power decoupled multi-port dual-active-bridge (DAB) DC-DC converter employing multiple transformers. Conventional multiport DAB DC-DC converters experience a power coupling issue from the use of a single transformer, which essentially requires complex power decoupling control. To solve this issue, a multiport DAB DC-DC converter employing multiple transformers is proposed to decouple output power without additional complex control algorithms. The proposed converter uses multiple transformers that can expand output ports easily. Therefore, transformers and the proposed multi-port DAB converter can be designed simply. In addition, the number of coupling inductors can be reduced in the proposed three-port DAB converter compared with that in conventional multiport DAB converters. The power decoupling characteristics and equivalent circuit of the proposed converter are analyzed using theoretical model approaches. Finally, a 3-kW laboratory prototype is developed to verify the effectiveness of the proposed converter.

A Study of the Three Port NPC based DAB Converter for the Bipolar DC Grid (양극성 직류 배전망에 적용 가능한 3포트 NPC 기반의 DAB 컨버터에 대한 연구)

  • Yun, Hyeok-Jin;Kim, Myoungho;Baek, Ju-Won;Kim, Ju-Yong;Kim, Hee-Je
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.4
    • /
    • pp.336-344
    • /
    • 2017
  • This paper presents the three-port DC-DC converter modeling and controller design procedure, which is part of the solid-state transformer (SST) to interface medium voltage AC grid to bipolar DC distribution network. Due to the high primary side DC link voltage, the proposed converter employs the three-level neutral point clamped (NPC) topology at the primary side and 2-two level half bridge circuits for each DC distribution network. For the proposed converter particular structure, this paper conducts modeling the three winding transformer and the power transfer between each port. A decoupling method is adopted to simplify the power transfer model. The voltage controller design procedure is presented. In addition, the output current sharing controller is employed for current balancing between the parallel-connected secondary output ports. The proposed circuit and controller performance are verified by experimental results using a 30 kW prototype SST system.

Power Hardware-in-the-Loop (PHIL) Simulation Testbed for Testing Electrical Interactions Between Power Converter and Fault Conditions of DC Microgrid (컨버터와 DC 마이크로그리드 사고 상황의 상호작용을 검증하기 위한 실시간 전력 시뮬레이션 테스트 베드)

  • Heo, Kyung-Wook;Jung, Jee-Hoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.2
    • /
    • pp.150-157
    • /
    • 2021
  • Nowadays, a DC microgrid that can link various distributed power sources is gaining much attention. Accordingly, research on fault situations, such as line-to-line and line-to-ground faults of the DC microgrid, has been conducted to improve grid reliability. However, the blackout of an AC system and the oscillation of a DC bus voltage have not been reported or have not been sufficiently verified by previous research. In this study, a 20 kW DC microgrid testbed using a power HIL simulation technique is proposed. This testbed can simulate various fault conditions without any additional grid facilities and dangerous experiments. It includes the blackout of the DC microgrid caused by the AC utility grid's blackout, a drastic load increment, and the DC bus voltage oscillation caused by the LCL filter of the voltage source converter. The effectiveness of the proposed testbed is verified by using Opal-RT's OP5707 real-time simulator with a 3 kW prototype three-port dual-active-bridge converter.