• Title/Summary/Keyword: Three-phase wireless power transfer system

Search Result 4, Processing Time 0.012 seconds

Magnetic-Field-Model and Circuit-Model Based Analysis of Three-Phase Magnetically Coupled Resonant Wireless Power Transfer Systems with Cylinder-Shaped Coils

  • Chen, Xuling;Fu, Xiewei;Jiang, Chong;Pei, Cunhui;Liu, Fuxin
    • Journal of Power Electronics
    • /
    • v.18 no.4
    • /
    • pp.1154-1164
    • /
    • 2018
  • In single-phase magnetically coupled resonant (MCR) wireless power transfer (WPT) systems, the transfer characteristics, including the output power and transfer efficiency, are significantly influenced by the spatial scales of its coils. As a potential alternative, a three-phase MCR WPT system with cylinder-shaped coils that are excited in a voltage-fed manner has been proposed to satisfy the requirements of compact space. This system adopts a phase-shifted angle control scheme to generate a rotating magnetic field and to realize omnidirectional WPT that is immune to spatial scales. The magnetic field model and equivalent circuit models are built to holistically analyze the system characteristics under different angular misalignments. Research results show that the transfer characteristics can be improved by modulating the phase-shifted angle in each phase. Experiments have also been carried out to evaluate the accuracy of the theoretical analysis and to confirm the validity of the system modeling method.

Three-phase high power wireless transmission system (3상 대용량 무선 전력 전송 시스템)

  • Oh, Jungsik;Lee, Myungjin;Cha, Seungtae;Kim, Juyoung;Lee, Kwangwoon;Park, Taesik
    • Journal of IKEEE
    • /
    • v.21 no.3
    • /
    • pp.195-201
    • /
    • 2017
  • High-power wireless transmission system becomes a key technology for the advance of battery-powered devices. The wireless power transfer devices are currently dominated by the inductive and capacitive wireless power transfer systems, which have relatively low power transmission capacity and low efficiency rather than the wired power transmission. The work presented in this paper proposes an alternative method of high-power transmission system, based on a variable speed motor system with a magnetic coupling. It enables high-capacity power transmission, high efficiency, and low possibility of failures, and the performance of the proposed scheme is verified by simulation and experiments.

A Bridgeless Single Stage AC-DC Converter for Wireless Power Charging System (무선전력충전시스템을 위한 브리지리스 단일전력단 교류-직류 컨버터)

  • Kim, Min-Ji;Yoo, Sang-Jae;Yoo, Kyung-Jong;Woo, Jung-Won;Kim, Eun-Soo;Hwang, In-Gab
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.1
    • /
    • pp.44-53
    • /
    • 2020
  • A bridgeless single-stage AC-DC converter for wireless power charging systems is proposed. This converter is composed of a PFC stage and a three-level hybrid DC-DC stage. The proposed converter can control the wide output voltage (200-450 VDC) by the variable link voltage and the pulse-width voltage applied to the primary resonant circuit due to the phase-shifted modulation at a fixed switching frequency. Moreover, the input power factor and the total harmonic distortion can be improved by using the proposed converter. A 1 kW prototype was fabricated and validated through experimental results and analysis.

A Study on Fingerprint-Based Coil Alignment Improvement Technique for Magnetic Resonant Wireless Power Transfer System (핑거프린트 방식의 자기 공진형 무선전력전송 코일 정렬 상태 개선 기법 연구)

  • Kim, Sungjae;Lee, Euibum;Ku, Hyunchul
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.30 no.1
    • /
    • pp.38-44
    • /
    • 2019
  • This paper proposes fingerprint-based positioning methods which can be used in a magnetic resonant wireless power transfer(WPT) system and verifies their performance. A new receiver coil with small orthogonal auxiliary coils is proposed to measure magnetic field signals in three axial directions. The magnitude and phase characteristics of the three-axis electromotive force can be obtained by using the proposed coil. To predict a position with the measured values, we propose a lookup table-based method and linear discriminant analysis-based method. For verification, the proposed methods are applied to predict 75 positions of the 6.78 MHz WPT system, and the performances such as accuracy and computation time are compared.