• 제목/요약/키워드: Three-phase induction motor

검색결과 291건 처리시간 0.028초

Variable-Speed Prime Mover Driving Three-Phase Self-Excited Induction Generator with Static VAR Compensator Voltage Regulation -Part I : Theoretical Performance Analysis-

  • Ahmed, Tarek;Nagai, Schinichro;Soshin, Koji;Hiraki, Eiji;Nakaoka, Mutsuo
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • 제3B권1호
    • /
    • pp.1-9
    • /
    • 2003
  • This paper deals with the nodal admittance approach steady-state frequency domain analysis of the three-phase self-excited induction generator (SEIG) driven by the variable speed prime mover as the wind turbine. The steady-state performance analysis of this power conditioner designed for the renewable energy is based on the principle of equating the input mechanical power of the three-phase SEIG to the output mechanical power of the variable speed prime mover mentioned above. Us-ing the approximate frequency domain based equivalent circuit of the three-phase SEIG. The main features of the present algorithm of the steady-state performance analysis of the three-phase SEIG treated here are that the variable speed prime mover characteristics are included in the approximate equivalent circuit of the three-phase SEIG under the condition of the speed changes of the prime mover without complex computations processes. Furthermore, a feedback closed-loop voltage regulation of the three-phase SEIG as a power conditioner which is driven by variable speed prime movers such as the wind turbine(WT) employing the static VAR compensator(SVC) circuit composed of the thyristor phase controlled reactor(TCR) and the thyristor switched capacitor(TSC) controlled by the PI controller is designed and considered for wind-turbine driving power conditioner.

인덕션 방식을 이용한 평면 스테이지의 동특성 개선 (Improvement of Dynamic Characteristic of Large-Areal Planar Stage Using Induction Principle)

  • 정광석;박준규;김효준
    • 제어로봇시스템학회논문지
    • /
    • 제15권7호
    • /
    • pp.675-682
    • /
    • 2009
  • Instead of direct driving like BLDC, the induction principle is adopted as a driving one for planar stage. The stage composed of four linear induction motors put in square type is activated by two-axial forces; low-frequency attractive force and thrust force of the linear induction motors. Here, the modified vector control whose new inputs are q-axis current and dc current biased to three phase current instead of d-axis current or flux current is applied extensively to overall motion of the stage. For the developed system, the precision step test and the constant velocity test are tried to guarantee its feasibility for TFT-LCD pattern inspection. However, to exclude a discontinuity due to phase shift and minimize a force ripple synchronized with the command frequency, the initial system is revised to the antagonistic structure over the full degree of freedom. Concretely describing, the porous air bearings guide an air-gapping of the stage up and down and a pair of liner induction motors instead of single motor are activated in the opposite direction each other. The performances of the above systems are compared from trapezoid tracking test and sinusoidal test.

단상 SRM에 사용되는 전자석 기동 장치 (Electromagnet Starting Device used in the Single-Phase SRM)

  • 김준호;이은웅;이종한
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 B
    • /
    • pp.813-814
    • /
    • 2006
  • The squirrel case induction motor has widely used in the driving of the blowers but it is low efficiency and hard to control. So, the damper is used for the control of a flow and it cause to low the driving efficiency. Our laboratory has proposed the single-phase SRM(switched reluctance motor) for driving blowers. It has salient pole structure and can be reduced a number of semiconductors than three-phase SRM. But it can not be starting by itself and has heavier torque ripple than three-phase SRM. For self-starting the single-phase SRM is required the starting device which place the rotor at the rising inductance slope. On this paper, the electromagnet starting device is designed to generate the starting torque and to fix the rotating direction of the single-phase SRM which is fabricaed to use a blower.

  • PDF

LaVIEW를 이용한 휴대용 3상 소형유도전동기 회전자 바 고장 진단 시스템 개발 (The Development of Portable Rotor Bar Fault Diagnosis System for Three Phase Small Induction Motors Using LabVIEW)

  • 송명현;박규남;한동기;이태훈;우혁재
    • 전기학회논문지P
    • /
    • 제56권1호
    • /
    • pp.51-55
    • /
    • 2007
  • In this paper, a portable rotor bar fault diagnosis system for small 3 phase induction motors is suggested. For portable real-tine diagnosis system, an USB-DAQ board for collecting the 3 phase current data, three current probes, and a notebook computer are used. The LabVIEW graphical language is used for filtering, analysis, storing, and monitoring the current data. The three phase stator current are filtered and transformed to frequency level by FIT. An analysis window programed by LabVIEW is located in front panel to show the FIT results and this suggested window has a zooming function to detect the fault feature more easily near the feature frequency range which is varying by the slip frequency. To show the possibility of portable rotor bar diagnosis system, three types(healthy, one rotor bar fault, two rotor bar fault) of rotor bar are intentionally prepared and compared by the suggested window of front panel. Experimental results are shown that a suggested diagnosis system is applicable to portable diagnosis system and the rotor bar fault is detected by the frequency window in front panel programed in LabVIEW graphical language.

단상 유도전동기의 무부하손실을 고려한 등가회로 정수의 결정 (Determination of Parameters of Equivalent Circuit Taking No-Load Losses Into Account for Single-Phase Induction Motors)

  • 좌종근;김도진
    • 전기학회논문지P
    • /
    • 제59권4호
    • /
    • pp.358-363
    • /
    • 2010
  • This paper proposes a step-by-step method of determining the parameters of equivalent circuit which is considered the no load losses for the single phase induction motor which has the starting winding. This method is comprised of three steps, and the stator resistance which is measured by the method of voltage drop is treated as constant and the stator and the rotor leakage reactances are assumed to be the same in every step. The test results of no load and locked rotor test are used in the 1st and 2nd step, and the ratings of name plate of the motor are needed in the 3rd step. In the 1st step, the traditional equivalent circuit parameters are directly calculated by no load and locked rotor conditions. In the next step, five nonlinear simultaneous equations for five unknown parameters can be set up by no load and locked rotor equivalent circuits. These equations are solved by using the initial parameters obtained by the 1st step parameters. In the final step, three nonlinear simultaneous equations for rotor winding resistance, leakage reactance and no load losses component resistance can be set up by equivalent circuit under the rated operation. Three parameters are solved by using the 2nd step parameters. Thus, equivalent circuit parameters are gradually refined step by step. The validity of the proposed method is evaluated by comparing the computed values obtained by the equivalent circuit parameters with the experimental values of the load test.

Fault Detection and Diagnosis System for a Three-Phase Inverter Using a DWT-Based Artificial Neural Network

  • Rohan, Ali;Kim, Sung Ho
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제16권4호
    • /
    • pp.238-245
    • /
    • 2016
  • Inverters are considered the basic building blocks of industrial electrical drive systems that are widely used for various applications; however, the failure of electronic switches mainly affects the constancy of these inverters. For safe and reliable operation of an electrical drive system, faults in power electronic switches must be detected by an efficient system that is capable of identifying the type of faults. In this paper, an open switch fault identification technique for a three-phase inverter is presented. Single, double, and triple switching faults can be diagnosed using this method. The detection mechanism is based on stator current analysis. Discrete wavelet transform (DWT) using Daubechies is performed on the Clarke transformed (-) stator current and features are extracted from the wavelets. An artificial neural network is then used for the detection and identification of faults. To prove the feasibility of this method, a Simulink model of the DWT-based feature extraction scheme using a neural network for the proposed fault detection system in a three-phase inverter with an induction motor is briefly discussed with simulation results. The simulation results show that the designed system can detect faults quite efficiently, with the ability to differentiate between single and multiple switching faults.

선형 및 비선형 부하 혼합 운전시 유도전동기의 동작 분석 (Operation Analysis of Induction Motor under the Combination of Linear & Non-linear Loads)

  • 김종겸;박영진;이동주;김준호;이종한;정종호;이은웅
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 춘계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.65-67
    • /
    • 2006
  • This paper presents a scheme on the characteristics of induction motor under the combination of linear & non-linear loads at the three phase 4-wire power distribution system. Under the combination operation of single & three phase load, voltage unbalance will be generated and current unbalance will be more severe by the dropped voltage quality. All power electronic converters used in different types of electronic systems can increase harmonic disturbances by injecting harmonic currents directly into the feeder grid of three phase 4-wire. Harmonic current may cause torque to decrease. Motors may also overheat or become noisy and torque oscillation in the rotor can lead to mechanical resonance and vibration.

  • PDF

실시간 확률 모델링 기법을 이용한 유도기기의 고장검출 및 진단시스템 (Fault Detection and Diagnosis Systems of Induction Machines using Real-Time Stochastic Modeling Approach)

  • 이진우;김광수;조현철;이영진;이권순
    • 전기학회논문지P
    • /
    • 제58권3호
    • /
    • pp.241-248
    • /
    • 2009
  • This paper presents stochastic methodology based fault detection algorithm for induction motor systems. We measure current of healthy induction motors by means of hall sensor systems and then establish its probability distribution. We propose online probability density estimation which is effective in real-time implementation due to its simplicity and low computational burden. In addition, we accomplish theoretical analysis of the proposed estimation to demonstrate its convergence property by using statistical convergence and system stability theories. We apply our fault detection approach to three-phase induction motors and achieve real-time experiment for evaluating its reliability and practicability in industrial fields.

온라인 확률분포 추정기법을 이용한 확률모델 기반 유도전동기의 고장진단 시스템 (Stochastic Model based Fault Diagnosis System of Induction Motors using Online Probability Density Estimation)

  • 조현철;김광수;이권순
    • 전기학회논문지
    • /
    • 제57권10호
    • /
    • pp.1847-1853
    • /
    • 2008
  • This paper presents stochastic methodology based fault detection algorithm for induction motor systems. We measure current of healthy induction motors by means of hall sensor systems and then establish its probability distribution. We propose online probability density estimation which is effective in real-time implementation due to its simplicity and low computational burden. In addition, we accomplish theoretical analysis to demonstrate convergence property of the proposed estimation by using statistical convergence and system stability theory. We apply our fault diagnosis approach to three-phase induction motors and achieve real-time experiment for evaluating its reliability and practicability in industrial fields.

Robust Diagnosis Algorithm for Identifying Broken Rotor Bar Faults in Induction Motors

  • Hwang, Don-Ha;Youn, Young-Woo;Sun, Jong-Ho;Kim, Yong-Hwa
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권1호
    • /
    • pp.37-44
    • /
    • 2014
  • This paper proposes a new diagnosis algorithm to detect broken rotor bars (BRBs) faults in induction motors. The proposed algorithm is composed of a frequency signal dimension order (FSDO) estimator and a fault decision module. The FSDO estimator finds a number of fault-related frequencies in the stator current signature. In the fault decision module, the fault diagnostic index from the FSDO estimator is used depending on the load conditions of the induction motors. Experimental results obtained in a 75 kW three-phase squirrel-cage induction motor show that the proposed diagnosis algorithm is capable of detecting BRB faults with an accuracy that is superior to a zoom multiple signal classification (ZMUSIC) and a zoom estimation of signal parameters via rotational invariance techniques (ZESPRIT).