• 제목/요약/키워드: Three-phase fault calculation

검색결과 8건 처리시간 0.023초

IEC 60909에 의한 삼상 고장계산 (Three-phase Fault Calculation by IEC 60909)

  • 손석금
    • 전기학회논문지P
    • /
    • 제63권1호
    • /
    • pp.12-18
    • /
    • 2014
  • This paper analyzes how to calculate the three phase short circuit current calculation procedures used in the IEC 60909 short circuit. It presented the new procedure of the fault current for the interrupting capacity of the circuit breaker. This procedure is applied to the future power system and calculates the fault current. Power demands are increased because of the growth of the economy for this reason, the fault current of the power system is largely increased and the fault current procedure for the proper interrupting capacity calculation of the existing or the new circuit breaker is essential. How to calculate the three phase short circuit current for ac electrical system and select the high voltage and low voltage circuit breaker based on IEC 60909 standards.

3상 4선식 인버터의 선간 단락 사고 발생 시 새로운 3D SVM 기법 (A New 3-D Space Vector PWM under Line-to-Line Fault in Three-Phase Four-Wire Inverter)

  • 안창균;최봉연;강경민;이훈;김미나;원충연
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2020년도 전력전자학술대회
    • /
    • pp.330-331
    • /
    • 2020
  • In this paper, we propose a new three-dimension space vector pulse width modulation for three-phase four-wire inverter under line-to-line fault. In order to this method, the processes of selecting of the output voltage vectors and synthesizing the reference voltage vector are discussed. In addition, we deal with the calculation of the duty cycles for each sector. The experiments are provided to validate the effectiveness of the proposed method.

  • PDF

실계통 345kV 지중송전선 대칭좌표 임피던스의 해석 (Analysis of Sequence Impedances of 345kV Cable Transmission Systems)

  • 최종기;안용호;윤용범;오세일;곽양호;이명희
    • 전기학회논문지
    • /
    • 제62권7호
    • /
    • pp.905-912
    • /
    • 2013
  • Power system fault analysis is commonly based on well-known symmetrical component method, which describes power system elements by positive, negative and zero sequence impedance. In case of balanced fault, such as three phase short circuit, transmission line can be represented by positive sequence impedance only. The majority of fault in transmission lines, however, is unbalanced fault, such as line-to-ground faults, so that both positive and zero sequence impedance is required for fault analysis. When unbalanced fault occurs, zero sequence current flows through earth and skywires in overhead transmission systems and through cable sheaths and earth in cable transmission systems. Since zero sequence current distribution between cable sheath and earth is dependent on both sheath bondings and grounding configurations, care must be taken to calculate zero sequence impedance of underground cable transmission lines. In this paper, conventional and EMTP-based sequence impedance calculation methods were described and applied to 345kV cable transmission systems (4 circuit, OF 2000mm2). Calculation results showed that detailed circuit analysis is desirable to avoid possible errors of sequence impedance calculation resulted from various configuration of cable sheath bonding and grounding in underground cable transmission systems.

Study of Short-Circuit Currents Around Dĕtmarovice Power Station

  • Ali, Shehab Abdulwadood
    • Transactions on Electrical and Electronic Materials
    • /
    • 제15권3호
    • /
    • pp.117-124
    • /
    • 2014
  • The calculation of short-circuit currents is important for power systems operation and restoration, and for determining the means to protect human lives and properties. In this paper, a part of a power system network, around the D$\breve{e}$tmarovice power station in Czech Republic, was simulated by the well known program EMTP-ATPDraw (Electromagnetic Transients Program-Alternative Transient Program), and short-circuit currents and voltages were calculated at different points in the electric network and presented as a time function by the PlotXY program. Calculations were done just for phase-to-ground, and for the three-phase short-circuit at the Kun$\check{c}$ice substation. The results were important for determining the characteristics of the equipment required to withstand or break the short-circuit current; for this reason, the calculations were repeated using earth-fault resistances only for the case of busbar KUN shown in Figs. 5 and 6.

저압계통 보호 엔지니어링을 위한 시각화 소프트웨어 개발 (A Development of Visualization Software for Protective Engineering in Low-Voltage Power Systems)

  • 윤상윤;이남호;이욱화;이진;김재철
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제55권7호
    • /
    • pp.297-305
    • /
    • 2006
  • This paper summarizes a development of visualization software for protective engineering in low-voltage power systems. The study is concentrated on the following aspects. First, a software engineering method is applied for designing the object-oriented program. The design and implementation of a Graphic User Interface(GUI) and its integration to a power system framework are developed using object-oriented programming(OOP) in Visual C++. Second, we develop the short circuit analysis module that oriented a low-voltage power system. It is possible to calculate a peak, symmetrical RMS, DC component and asymmetrical fault currents for each time. And it is the first software that can calculate the fault current for single branch of three-phase system. The calculation accuracy is compared with commercial software, and the libraries of low-voltage components are served for convenience use. Third, protective engineering functions are equipped. It is possible to automatically select the circuit breaker which based on the user input characteristics and the fault current calculation and examine the protective coordination. Through the case study, we verified that the developed software can be effectively used to examine the protective engineering in low-voltage power systems.

System-Level Vulnerability Analysis for Commutation Failure Mitigation in Multi-infeed HVDC Systems

  • Yoon, Minhan;Jang, Gilsoo
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권3호
    • /
    • pp.1052-1059
    • /
    • 2018
  • This paper deals with commutation failure of the line-commutated converter high voltage direct current (LCC HVDC) system caused by a three phase fault in the ac power system. An analytic calculation method is proposed to estimate the maximum permissible voltage drop at the LCC HVDC station on various operating point and to assess the area of vulnerability for commutation failure (AOV-CF) in the power system based on the residual phase voltage equation. The concept is extended to multi-infeed HVDC power system as the area of severity for simultaneous commutation failure (AOS-CF). In addition, this paper presents the implementation of a shunt compensator applying to the proposed method. An analysis and simulation have been performed with the IEEE 57 bus sample power system and the Jeju island power system in Korea.

지중 송전선로 대칭분 임피던스 해석을 위한 EMTP 전후처리기 개발과 활용 (Development and Application of Pre/Post-processor to EMTP for Sequence Impedance Analysis of Underground Transmission Cables)

  • 최종기;장병태;안용호;최상규;이명희
    • 전기학회논문지
    • /
    • 제63권10호
    • /
    • pp.1364-1370
    • /
    • 2014
  • Power system fault analysis has been based on symmetrical component method, which describes power system elements by positive, negative and zero sequence impedance. Obtaining accurate line impedances as possible are very important for estimating fault current magnitude and setting distance relay accurately. Especially, accurate calculation of zero sequence impedance is important because most of transmission line faults are line-to-ground faults, not balanced three-phase fault. Since KEPCO has started measuring of transmission line impedance at 2005, it has been revealed that the measured and calculated line impedances are well agreed within reasonable accuracy. In case of underground transmission lines, however, large discrepancies in zero sequence impedance were observed occasionally. Since zero sequence impedance is an important input data for distance relay to locate faulted point correctly, it is urgently required to analyze, detect and consider countermeasures to the source of these discrepancies. In this paper, development of pre/post processor to ATP (Alternative Transient Program) version of EMTP (Electro-Magnetic Transient Program) for sequence impedance calculation was described. With the developed processor ATP-cable, effects of ground resistance and ECC (Earth Continuity Conductor) on sequence impedance were analyzed.

순시적인 전압 sag 보상기에 대한 제어 알고리즘의 해석 (Analysis of Control Algorithm for Instantaneous Voltage Sag Corrector)

  • 이상훈;김재식;최재호
    • 전력전자학회논문지
    • /
    • 제6권2호
    • /
    • pp.173-179
    • /
    • 2001
  • 본 논문은 배전계통의 전력품질 개선을 위한 순시 전압강하 보상기의 제어 알고리즘에 대한 연구를 수행하였다. 특별히 순시적인 전압강하의 원인중 가장 대표적인 1선 지락사고 시에 발생하는 불평형과 비대칭 문제를 해석하기 위하여 새로운 대칭성분 검출 기법을 제안하였다. 제안되 방법은 간단한 연산만을 사용하며, 전압보상을 위한 대칭성분의 제어 기준값이 별도의 위상검출 과정을 거치지 않고도 직류 값으로 표현되도록 하였다. 그리고 기준전압의 발생 시에 IEC에서 규정하고 있는 UF와 MF를 사용하도록 하였다. 제안된 제어기법을 사용하면 보상장치는 매우 빠른 응답특성을 가지고 보상된 전압 파형의 총고조파왜형률(THD)도 매우 낮게 된다. 마지막으로 EMTDC 시뮬레이션과 실험을 통하여 제안된 방법의 타당성을 입증하였다.

  • PDF