• 제목/요약/키워드: Three-dimensional microstructures

검색결과 61건 처리시간 0.015초

U-net 딥러닝 기법을 활용한 PVA 섬유 보강 시멘트 복합체의 섬유 분리 (Phase Segmentation of PVA Fiber-Reinforced Cementitious Composites Using U-net Deep Learning Approach)

  • 서지우;한동석
    • 한국전산구조공학회논문집
    • /
    • 제36권5호
    • /
    • pp.323-330
    • /
    • 2023
  • PVA 섬유 보강 시멘트 복합체는 매우 복잡한 미세구조를 가지고 있으며, 재료의 거동을 정확히 평가하기 위해서는 미세구조 특성을 반영하여 실제 실험과 시너지효과를 내며 효율적인 재료 설계를 가능하게 하는 해석 모델의 개발이 중요하다. PVA 섬유 보강 시멘트 복합체의 역학적 성능은 PVA 섬유의 방향성에 큰 영향을 받는다. 그러나 마이크로-CT 이미지로부터 얻은 PVA 섬유의 회색조 값을 인접한 상과 구분하기 어려워, 섬유 분리 과정에 많은 시간이 소요된다. 본 연구에서는 섬유의 3차원 분포를 얻기 위하여 0.65㎛3의 복셀 크기를 가지는 마이크로-CT 이미지 촬영을 수행하였다. 학습에 사용될 학습 데이터를 생성하기 위해 히스토그램, 형상, 그리고 구배 기반 상 분리 방법을 적용하였다. 본 연구에서 제안된 U-net 모델을 활용하여 PVA 섬유 보강 시멘트 복합체의 마이크로- CT 이미지로부터 섬유를 분리하는 학습을 수행하였다. 훈련의 정확도를 높이기 위해 데이터 증강을 적용하였으며, 총 1024개의 이미지를 훈련 데이터로 사용하였다. 모델의 성능은 정확도, 정밀도, 재현율, F1 스코어를 평가하였으며, 학습된 모델의 섬유 분리 성능이 매우 높고 효율적이며, 다른 시편에도 적용될 수 있음을 확인하였다.