• 제목/요약/키워드: Three-dimensional car model

검색결과 23건 처리시간 0.039초

수동제어 장치를 이용한 3 차원 자동차 모형의 항력감소 (Drag Reduction of a Three-Dimensional Car Model Using Passive Control Device)

  • 이욱;사공웅;최해천
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.2868-2872
    • /
    • 2007
  • In this study, a passive control using a boat-tail device is conducted for a three-dimensional car model in ground proximity. We consider various boat-tails and investigate the mechanism of drag reduction by them. By varying the length and slant angle of boat-tail, we obtain drag reductions up to 40%. From the oil-surface flow visualization and hot-wire measurement, the drag reduction by the boat-tail is characterized by the shear-layer instability and reattachment on the boat-tail, forming a small separation bubble at the upstream part of boat-tail surface, resulting in the delay of main separation and drag reduction. At high slant angles, the flow fully separates and drag is nearly same as that of no control.

  • PDF

FMVSS 강도테스트에 다른 자동차 시트프레임의 유한요소해석 (The Finite Element Analysis of Car Seat Frame According to The FMVSS Strength Test)

  • 이호용;임중연;범형택
    • 한국자동차공학회논문집
    • /
    • 제7권6호
    • /
    • pp.241-247
    • /
    • 1999
  • This study presents the structural analysis of car a seat frame by the finite element method. The load-deformation characteristics of seat frame are simulated according to the test requirements by FMVSS. Three dimensional modeling technique is applied to the components of the seat frame. The shell, solid , gap and rigid elements are employed to model the car seat frame assembly. Numerical results show that the recliner and kunckle plate are identified as the possible weak part of frame, and the results are well consistent with the experimental static load test. The current analysis model can provide useful informations to design a new car seat and can reduce the overall design cost and time.

  • PDF

검증된 고속철도 차량의 20량편성 정밀모형에 의한 철도교량의 동적응답 분석 (Verified 20-car Model of High-speed Train for Dynamic Response Analysis of Railway Bridges)

  • 최성락;이용선;김상효;김병석
    • 한국전산구조공학회논문집
    • /
    • 제15권4호
    • /
    • pp.693-702
    • /
    • 2002
  • 본 연구에서는 고속철도 열차와 교량구조물의 상호작용에 의한 동적응답을 보다 정밀하게 분석하기 위해 3차원의 주행차량모형을 적용한 20량편성정밀 열차모형과 경부고속철도의 주교량 형식인 2경간 연속 PSC 박스거더교(2@40m)를 대강으로 3차원의 뼈대요소를 사용한 교량모형을 이용하여 철도교의 동적거동 해석 프로그램을 개발하였으며, 열차의 주행시험 결과와의 비교를 통해 개발된 프로그램의 타당성을 검증하였다. 또한 보다 효율적인 열차모형을 제시하기 위해 다양한 편성모형 및 하중모형의 조합에 따른 분석결과에 의하면 가장 무거운 KTX의 동력차를 대상으로 주행차량모형을 적용하고 나머지 차량들은 주행하중모형을 적용한 혼합모형이 효율적인 것으로 판단되었으며, 경부고속철도와 같이 복선구조의 교량인 경우에는 열차의 교행에 의해 증폭될 수 있는 교량의 동적응답 특성에 대한 체계적인 검토가 필요한 것으로 나타났다

Effect on measurements of anemometers due to a passing high-speed train

  • Zhang, Jie;Gao, Guangjun;Huang, Sha;Liu, Tanghong
    • Wind and Structures
    • /
    • 제20권4호
    • /
    • pp.549-564
    • /
    • 2015
  • The three-dimensional unsteady incompressible Reynolds-averaged Navier-Stokes equations and k-${\varepsilon}$ double equations turbulent model were used to investigate the effect on the measurements of anemometers due to a passing high-speed train. Sliding mesh technology in Fluent was utilized to treat the moving boundary problem. The high-speed train considered in this paper was with bogies and inter-carriage gaps. Combined with the results of the wind tunnel test in a published paper, the accuracy of the present numerical method was validated to be used for further study. In addition, the difference of slipstream between three-car and eight-car grouping models was analyzed, and a series of numerical simulations were carried out to study the influences of the anemometer heights, the train speeds, the crosswind speeds and the directions of the induced slipstream on the measurements of the anemometers. The results show that the influence factors of the train-induced slipstream are the passing head car and tail car. Using the three-car grouping model to analyze the train-induced flow is reasonable. The maxima of horizontal slipstream velocity tend to reduce as the height of the anemometer increases. With the train speed increasing, the relationship between $V_{train}$ and $V_{induced\;slipstream}$ can be expressed with linear increment. In the absence of natural wind conditions, from the head car arriving to the tail car leaving, the induced wind direction changes about $330^{\circ}$, while under the crosswind condition the wind direction fluctuates around $-90^{\circ}$. With the crosswind speed increasing, the peaks of $V_X,{\mid}V_{XY}-V_{wind}{\mid}$ of the head car and that of $V_X$ of the tail car tend to enlarge. Thus, when anemometers are installed along high-speed railways, it is important to study the effect on the measurements of anemometers due to the train-induced slipstream.

중형 차량의 외부 유동특성에 관한 연구 (Investigation of Aerodynamic Characteristics of a Medium-Size Vehicle)

  • 이동렬
    • 동력기계공학회지
    • /
    • 제10권2호
    • /
    • pp.22-28
    • /
    • 2006
  • Computer simulation of the air flow over an automotive vehicle is now becoming a routine process in automotive industry to assess the aerodynamic characteristics of a medium-size vehicle such as $C_d\;and\;C_1$ and aslo to investigate the possibility of improving aerodynamic performance of the vehicle as a preliminary design for the production line. Mainly due to its contribution in saving time and cost in the development of new cars, computer simulation of the air flow over a vehicle is usually done well before a production car is introduced to the market and in gaining more and more attention as powerful computer resources are getting readily available nowadays. To aerodynamically design a car is mainly related with reducing a drag coefficient of car. A well designed car usually has a $C_d$ value in the range of $0.3{\sim}0.4$. It is understandable that automotive industry is rushing to reduce a drag coefficient as reducing even a small fraction of the $C_d$ value can have an enormous overall impact on many areas. Actually, the present research model was able to achieve a $C_d$ value in the range of $0.3{\sim}0.36$ for flow velocities of $60km/h{\sim}100km/h$ by strategically removing the possible factor hazardous to lower $C_d$ value. Prediction of the medium-size vehicle aerodynamics using CFD was performed when an actual car model was in the development stage and three-dimensional modeling was also performed to optimize it as the best model in terms of the best aerodynamic performance.

  • PDF

주행차량에 의한 궤도 동적?성의 매개변수 분석 (Parametric Analysis in Dynamic Characteristics of Railway Track due to Travelling Vehicle)

  • 김상효;이용선;조광일
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2003년도 춘계학술대회 논문집
    • /
    • pp.337-342
    • /
    • 2003
  • The dynamic load effects are conveyed to the railway bridges through tracks which are generated by moving trains The dynamic load effects may vary due to the dynamic characteristics of the applied vehicle loads and the railway bridges containing the track system. However, the track effects have been neglected or simplified by spring elements in the most studies since it is quite complex to consider the track systems in the dynamic analysis models of railway bridges. In this study, track system on railway bridges is modeled using a three-dimensional discrete-support model that can simulate the load carrying behavior of tracks. In addition, this program is developed with the precise 20-car model and a continuous PSC(prestressed concrete) box girder bridge, which is the main bridge type of Korea Train express(KTX). Three-dimensional elements are used for both. The dynamic response of railway bridges is found to be affected depending on whether the track model is considered or not. The influencing rate depends on the traveling speed and different wheel-axle distance. The dynamic bridge response is decreased remarkably by the track systems around the resonant frequency. Therefore, the resonance effect can be reduced by modifying the track properties in the railway bridge.

  • PDF

TTX 구동차 설계안의 충돌압괴특성 분석 (Crush Analysis of a TTX M-Car Design)

  • 정현승;권태수;구정서;조태민
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2004년도 추계학술대회 논문집
    • /
    • pp.616-621
    • /
    • 2004
  • In this paper, the crush characteristics of a tilting train express (TTX) M-car design are evaluated with a head-on collision scenario. Its body shell is divided into three parts - front end, middle section, and rear end. For each part, crush-force relation is evaluated numerically through 3-dimensional shell element analysis with LS-DYNA. TTX's embody structure is a hybrid type structure made of steel and composite materials. Composite sandwich panels are modeled as layered shells whose layers have different material properties. And a damage material model is used to consider the effect of stiffness degradation during deformation. The crush characteristics obtained from these calculations will be used as material modeling data of full-rake collision analyses.

  • PDF

엔진룸 내의 열유체 유동의 2차원 수치시뮬레이션 (A two-dimensional numerical simulation of the thermal and fluid flow in engine room)

  • 유정열;윤홍열;이훈구
    • 오토저널
    • /
    • 제14권6호
    • /
    • pp.99-104
    • /
    • 1992
  • The complex geometry of the engine room of a passenger car has been modelled two-dimensionally and the thermal and fluid flow therein have been analyzed by using a commercially available code, PATRAN/FLORAM$\mid$N. FLOTRAN adopts a finite element method with streamline upwind formulation for convective terms and the k-.epsilon. turbulence model to solve the three dimensional turbulent flow and heat transfer problems. Velocity vectors, pressure and temperature distributions have been obtained for various cases with different arrangements of license plate, underbody-covers and air dams. The results show that the numerical analysis using PATRAN/FLOTRAN can predict qualitatively well the practical phenomena.

  • PDF

3차원 방열기 모델을 이용한 엔진냉각 해석 (An Analysis of Engine Cooling using a Three-dimensional Radiator Model)

  • 이영림
    • 한국자동차공학회논문집
    • /
    • 제9권4호
    • /
    • pp.10-17
    • /
    • 2001
  • The performance of a radiator is generally determined using a wind tunnel, in which the air velocity is uniform. However, when it is installed in a car, the distribution of the air velocity becomes nonuniform due to front-end openings, cross members, and horns etc., resulting in lower performance. In this study, several underhood flow simulations have been first performed to get flow rates and velocity distributions over the radiator. Secondly heat release rates are calculated by both a performance curve and a radiator model. Finally, using an engine cooling system simulator, radiator-top-tank temperature is predicted and the variations of heat release rate and radiator-top-tank temperature with nonuniformity of air velocity distributions are analyzed. The results show that the current engine cooling model successfully accounts for the nonuniformity effects that should be considered for higher accuracy in predicting engine cooling performance.

  • PDF

Investigation of effects of twin excavations effects on stability of a 20-storey building in sand: 3D finite element approach

  • Hemu Karira;Dildar Ali Mangnejo;Aneel Kumar;Tauha Hussain Ali;Syed Naveed Raza Shah
    • Geomechanics and Engineering
    • /
    • 제32권4호
    • /
    • pp.427-443
    • /
    • 2023
  • Across the globe, rapid urbanization demands the construction of basements for car parking and sub way station within the vicinity of high-rise buildings supported on piled raft foundations. As a consequence, ground movements caused by such excavations could interfere with the serviceability of the building and the piled raft as well. Hence, the prediction of the building responses to the adjacent excavations is of utmost importance. This study used three-dimensional numerical modelling to capture the effects of twin excavations (final depth of each excavation, He=24 m) on a 20-storey building resting on (4×4) piled raft. Because the considered structure, pile foundation, and soil deposit are three-dimensional in nature, the adopted three-dimensional numerical modelling can provide a more realistic simulation to capture responses of the system. The hypoplastic constitutive model was used to capture soil behaviour. The concrete damaged plasticity (CDP) model was used to capture the cracking behaviour in the concrete beams, columns and piles. The computed results revealed that the first excavation- induced substantial differential settlement (i.e., tilting) in the adjacent high-rise building while second excavation caused the building tilt back with smaller rate. As a result, the building remains tilted towards the first excavation with final value of tilting of 0.28%. Consequently, the most severe tensile cracking damage at the bottom of two middle columns. At the end of twin excavations, the building load resisted by the raft reduced to half of that the load before the excavations. The reduced load transferred to the piles resulting in increment of the axial load along the entire length of piles.