• Title/Summary/Keyword: Three-dimensional Flow

Search Result 2,491, Processing Time 0.032 seconds

Study on optimization technique for the design of ventilation system of subway (지하철 환기시스템의 최적화에 관한 연구)

  • 김광용;조재형;리쉬밍;양태윤
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.5
    • /
    • pp.630-639
    • /
    • 1998
  • The present research aimed at development of a computer code for the optimal design of ventilation system based on one-dimensional analysis of the air flow. Model experiment and three-dimensional flow analysis have been implemented to determine loss coefficients that were needed for the optimization technique. A research on optimum shape of ventilation shaft has been also carried out through the three-dimensional analysis of the flow.

  • PDF

A Study on Simultaneous Analysis of Velocity and Density Distributions for High-Speed $CO_{2}$ Flow (고속 이산화탄소 유동장의 속도 및 밀도 동시 분석에 관한 연구)

  • Kim Yong-Jae;Ko Han Seo;Okamoto Koji
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.40-45
    • /
    • 2005
  • Velocity and density distributions of a high-speed and initial $CO_{2}$ jet flow have been analyzed simultaneously by a developed three-dimensional digital speckle tomography and a particle image velocimetry(PIV). Three high-speed cameras have been used for tomography and PIV since a shape of a nozzle for the jet flow is asymmetric and the initial flow is fast and unsteady, The speckle movements between no flow and $CO_{2}$ jet flow have been obtained by a cross-correlation tracking method so that those distances can be transferred to deflection angles of laser rays for density gradients. The three-dimensional density fields for the high-speed $CO_{2}$ jet flow have been reconstructed from the deflection angles by a real-time tomography method and the two-dimensional velocity fields have been calculated by a PIV method simultaneously and instantaneously.

  • PDF

Multi-dimensional Finite-Volume Flow Computation Using Unstructured Grid (비정렬격자 다차원 FVM유동계산)

  • Kim J. K.;Chang K.-S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.182-187
    • /
    • 1995
  • The present paper explains some advancement made by the authors for the compressible flow computation of the Euler equations based on the unstructured grid and vertex- centered finite volume method. Accurate solutions to the unsteady axisymmetric shock wave propagation problems and three-dimensional airplane flows have been obtained by a high-order upwind TVD and FCT schemes. Unstructured grid adaption is made for the unsteady shock wave problems by the dynamic h-refinement/unrefinement procedure and for the three-dimensional steady flows by the Delaunay point-insertion method to generate three-dimensional tetrahedral mesh enrichment. Some physics of the shock wave diffraction phenomena and three-dimensional airplane flow are discussed.

  • PDF

A Study on Estimation of inner and Wall Pressure Distribution by 3-Dimensional velocity Measurement using PIV (PIV를 이용한 3차원 속도계측에 의한 유동장의 공간 및 벽면압력 분포 추정에 관한연구)

  • 이영호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.4
    • /
    • pp.468-480
    • /
    • 1998
  • A flow measurement system which is able to measure the instantaneous three-dimensional velocity components and the pressure distribution of fluid flows is developed using a digital image processing system and the stereoscopic photogrammetry. This system consists of two TV cameras a digital image processor and a 32-bit microcomputer. The capability of the developed system is verified by a preliminary test in which three-dimensional displancements of moving particles arranged on a rotating plate are tracked automatically. The constructed system is through the measurement and spatial pressure distribution is also obtained. The measurement uncertainty of this system is evaluated quantitatively. The present technique is applicable to the measurement of an unsteady fluid phenomenon especially to the measurement of three-dimensional velocity field of a complex flow.

  • PDF

Three dimensional flow analysis within a profile extrusion die by using control volume finite-element method

  • Kim, Jongman;Youn, Jae-Ryoun;Hyun, Jae-Chun
    • Korea-Australia Rheology Journal
    • /
    • v.13 no.2
    • /
    • pp.97-106
    • /
    • 2001
  • Three-dimensional flow analysis was performed by using the control volume finite-element method for design of a profile extrusion die. Because polymer melt behavior is complicated and cross-sectional shape of the profile extrusion die is changing continuously, the fluid flow within the die must be analyzed three-dimensionally. A commercially available polypropylene is used for theoretical and experimental investigations. Material properties are assumed to be constant except for the viscosity. The 5-constant modified Cross model is used for the numerical analysis. A test problem is examined in order to verify the accuracy of the numerical method. Simulations are performed for conditions of three different screw speeds and three different die temperatures. Predicted pressure distribution is compared with the experimental measurements and the results of the previous two-dimensional study. The computational results obtained by using three dimensional CVFEM agree with the experimental measurements and are more accurate than those obtained by using the two-dimensional cross-sectional method. The velocity profiles and the temperature distributions within several cross-sections of the die are given as contour plots.

  • PDF

Turbulence Characteristics of a Three-Dimensional Boundary Layer on a Rotating Disk with an Impinging Jet (I) - Mean Flow - (충돌제트를 갖는 회전원판 위 3차원 경계층의 난류특성 (I) - 평균유동장 -)

  • Kang, Hyung Suk;Yoo, Jung Yul;Choi, Haecheon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.9
    • /
    • pp.1277-1289
    • /
    • 1998
  • The objective of the present study is to investigate experimentally the mean flow characteristics of the three-dimensional turbulent boundary layer over a rotating disk with an impinging jet at the center of the disk, which may be regarded as one of the simplest models for the flow in turbomachinery. A relatively strong radial outflow (crossflow) generated from the impinging jet is added to the radial outflow (crossflow) induced by the centrifugal force in order to create the three-dimensional boundary layer. A new calibration technique has been introduced to determine the velocity direction and magnitude using an I-wire probe, where the uncertainties are ${\pm}1.5^{\circ}$ and ${\pm}0.35\;m/s$, respectively, in the laminar boundary layer region, compared with the known exact solutions. The flow in the tangential direction is of similar type to that associated with a favorable pressure gradient, considering that no wake region appears in wall coordinate velocity profiles and the Clauser shape factor is between 4.0 and 5.3. The flow angle is significantly changed by the crossflow generated by the impinging jet.

CORRELATION STUDY OF THE MEASURED TUMBLE RATIOS USING THREE DIFFERENT METHODS: STEADY FLOW RIG; 2-DIMENSIONAL PIV; AND 3-DIMENSIONAL PTV WATER FLOW RIG

  • Kim, M.J.;Lee, S.H.;Kim, W.T.
    • International Journal of Automotive Technology
    • /
    • v.7 no.4
    • /
    • pp.441-448
    • /
    • 2006
  • In-cylinder flows such as tumble and swirl play an important role on the engine combustion efficiencies and emission formations. The tumble flow, which is dominant in current high performance gasoline engines, is able to effect fuel consumptions and emissions under a partial load condition in addition to the volumetric efficiency under a wide open throttle condition. Therefore, it is important to optimize the tumble ratio of a gasoline engine for better fuel economy, lower emissions, and maximum volumetric efficiency. First step for optimizing a tumble ratio is to measure a tumble ratio accurately. For a tumble ratio measurement, many different methods have been developed and used such as steady flow rig, PIV, PTV, and LDV. However, it is not well known about the relations among the measured tumble ratios using different methods. The purpose of this research is to correlate the tumble ratios measured using three different methods and find out merits and demerits of each measurement method. In this research the tumble flow was measured, compared, and correlated using three different measurement methods at the same engine: steady flow rig; 2-dimensional PIV; and 3-dimensional PTV water flow rig.

Three-dimensional Numerical Modelling of Seawater Circulation of Semi-enclosed Bay with the Flow-control Structures

  • JONG-KYU KIM;TAE-SOON KANG;HEON-TAE KIM
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.3
    • /
    • pp.35-42
    • /
    • 2001
  • The characteristics of tidal circulation with the flow-control structures using the three-dimensional numerical model (POM, Princeton Ocean Model) of Chinhae Bay, Korea were investigated. To confirm th efficiencies of flow-control structures, the training wall and submerged training wall were constructed at the mouth and narrow channel in Chinhae Bay. On the basis of the present investigation, the tidal circulation induced by the construction of flow-control structures could enhance the water exchange improvement appropriately. And, th training wall at the central is more dominated than the other structures for the efficient of water exchange. The sites and types of structure and flow patterns seem to be very sensitive in tidal simulation and changes in flow fields.

  • PDF

The effects of axial spacing on the unsteady secondary and performance in one-stage axial turbine (1단 터빈에서 축간격 변화가 비정상 이차유동 및 성능에 미치는 영향)

  • Park Junyoung;Baek JeHyun
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.537-540
    • /
    • 2002
  • Flow through turbomachinery has a very complex structure and is intrinsically unsteady. Especially, recent design trend to turbomachinery with short axial spacing makes the flow extremely complex due to the interaction between stator and rotor. Therefore, it is very necessary to clearly understand the complex flow structure to obtain the high efficiency turbomachinery. So, in this paper, the effects of axial spacing on the unsteady secondary flow performance in the one stage turbine are investigated by three-dimensional unsteady flow analysis. The three-dimensional solver is parallelized using domain decomposition and Message Passing Interface(MPI) standard to overcome the limitation of memory and the CPU time in three-dimensional unsteady calculation. A sliding mesh interface approach has been implemented to exchange flow information between blade rows.

  • PDF

An Analysis on Three-dimensional Viscous Flow Fields in the Volute Casing of a Small-size Turbo-compressor (소형터보압축기 볼류트 내부의 3차원 점성 유동장 해석)

  • Kim, D.W.;Kim, Youn-J.
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.777-782
    • /
    • 2000
  • The flow fields in the volute casing of a small-size turbo-compressor at different flowrate (design point ${\pm}20%$) are studied by numerical analysis. The governing equations for three-dimensional steady viscous flow are solved using SIMPLE algorithm with commercial code of STAR-CD. Numerical results show that the three-dimensional flow pattern inside the volute casing of a small-size turbo-compressor is strongly influenced by secondary flows that are typically created by the curvature or the casing passages. The flow pattern in the casing also affects the performance of the turbo-compressor. In order to elucidate the loss mechanism through the volute, we prepared the secondary flow, velocity magnitude, and static pressure distribution at the four cross-sectional planes of the casing.

  • PDF