• Title/Summary/Keyword: Three-dimensional Analysis

Search Result 6,262, Processing Time 0.038 seconds

A Study on the Development of a Three Dimensional Numerical Model for the Casting Processes (주조공정의 수치해석을 위한 3차원 전산모델 개발에 관한 연구)

  • ;S.Patankar
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.10
    • /
    • pp.1436-1444
    • /
    • 2002
  • A three dimensional numerical model was developed to analyze the mold filling and solidification processes straightforwardly in a casting processes. On the basis of the SIMPLER algorithm, the VOF method and the Equivalent Specific Heat method were adopted to deal with the free surface behavior and the latent heat evolution. The complete model has been validated using exact solutions and experimental results. The importance of three-dimensional effects has been highlighted by comparing the results from the three-dimensional analysis with those given by a two-dimensional analysis.

Three-Dimensional Finite Element Analysis of Forging Processes with Back Pressure Exerted by Spring Force (스프링 힘에 의한 배압부가 단조 공정의 3차원 유한요소해석)

  • Jang, S.M.;Kim, M.C.;Lee, M.C.;Jun, B.Y.;Joun, M.S.
    • Transactions of Materials Processing
    • /
    • v.19 no.5
    • /
    • pp.273-276
    • /
    • 2010
  • In this paper, back pressure forging processes of which back pressures are exerted by mechanical forces including spring reaction are simulated by three-dimensional finite element method. The basic three-dimensional approach extended from two-dimensional approach is accounted for. An axisymmetric backward and forward extrusion process having a back pressing die, which is exposed to oscillation of forming load due to variation of reduction ratios with stroke and its related frequent variation of major deforming region, is simulated by both two and three dimensional approaches to justify the presented approach by their comparison. A three-dimensional forging process having a back pressing die attached to the punch by a mechanical spring is simulated and the results are investigated to reveal accuracy of the presented approach.

Three dimensional seismic and static stability of rock slopes

  • Yang, X.L.;Pan, Q.J.
    • Geomechanics and Engineering
    • /
    • v.8 no.1
    • /
    • pp.97-111
    • /
    • 2015
  • The kinematical approach of limit analysis is used to estimate the three dimensional stability analysis of rock slopes with nonlinear Hoek-Brown criterion under earthquake forces. The generalized tangential technique is introduced, which makes limit analysis apply to rock slope problem possible. This technique formulates the three dimensional stability problem as a classical nonlinear programming problem. A nonlinear programming algorithm is coded to search for the least upper bound solution. To prove the validity of the present approach, static stability factors are compared with the previous solutions, using a linear failure criterion. Three dimensional seismic and static stability factors are calculated for rock slopes. Numerical results of indicate that the factors increase with the ratio of slope width and height, and are presented for practical use in rock engineering.

A local-global scheme for tracking crack path in three-dimensional solids

  • Manzoli, O.L.;Claro, G.K.S.;Rodrigues, E.A.;Lopes, J.A. Jr.
    • Computers and Concrete
    • /
    • v.12 no.3
    • /
    • pp.261-283
    • /
    • 2013
  • This paper aims to contribute to the three-dimensional generalization of numerical prediction of crack propagation through the formulation of finite elements with embedded discontinuities. The analysis of crack propagation in two-dimensional problems yields lines of discontinuity that can be tracked in a relatively simple way through the sequential construction of straight line segments oriented according to the direction of failure within each finite element in the solid. In three-dimensional analysis, the construction of the discontinuity path is more complex because it requires the creation of plane surfaces within each element, which must be continuous between the elements. In the method proposed by Chaves (2003) the crack is determined by solving a problem analogous to the heat conduction problem, established from local failure orientations, based on the stress state of the mechanical problem. To minimize the computational effort, in this paper a new strategy is proposed whereby the analysis for tracking the discontinuity path is restricted to the domain formed by some elements near the crack surface that develops along the loading process. The proposed methodology is validated by performing three-dimensional analyses of basic problems of experimental fractures and comparing their results with those reported in the literature.

Automatic Mesh Generation for Three-Dimensional Structures Consisting of Free-Form Surfaces (자유 곡면으로 구성되는 3차원 구조물에 대한 자동 요소 분할)

  • ;Yagawa, Genki
    • Korean Journal of Computational Design and Engineering
    • /
    • v.1 no.1
    • /
    • pp.65-75
    • /
    • 1996
  • This paper describes an automatic finite element(FE) mesh generation for three-dimensional structures consisting of free-form surfaces. This mesh generation process consists of three subprocesses: (a) definition of geometric model, i.e. analysis model, (b) generation of nodes, and (c) generation of elements. One of commercial solid modelers is employed for three-dimensional solid and shell structures. Node is generated if its distance from existing node points is similar to the node spacing function at the point. The node spacing function is well controlled by the fuzzy knowledge processing. The Delaunay method is introduced as a basic tool for element generation. Automatic generation of FE meshes for three-dimensional solid and shell structures holds great benefits for analyses. Practical performances of the present system are demonstrated through several mesh generations for three-dimensional complex geometry.

  • PDF

Flow Analysis of Centrifugal Compressor Using Quasi-Three-Dimensional Analysis (원심압축기의 유동해석을 위한 준삼차원 해석기법)

  • Ahn, S. J.;Oh, H. W.;Kim, K. Y.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.106-112
    • /
    • 2001
  • This paper presents analysis of the flows through three different types of radial compressor impeller by using quasi-three-dimensional analysis method. The method obtains two-dimensional solution for velocity distribution on meridional plane, and then calculates approximately the static pressure distributions on blade surfaces. Finite difference method is used for the solutions of governing equations. The compressors have low level compression-ratio and 12 straight radial blades with no sweepback. The results are compared with experimental data and the results of inviscid analysis with finite element method. It can be concluded that the agreement is good for the cases where viscous effects are not dominant.

  • PDF

Development of a Post-Processor for Three-Dimensional Forging Analysis (3차원 단조해석용 후처리기 개발)

  • 정완진;최석우
    • Transactions of Materials Processing
    • /
    • v.12 no.6
    • /
    • pp.542-549
    • /
    • 2003
  • Three-dimensional forging analysis becomes an inevitable tool to make design process more reliable and more producible. In this study, in order to make the investigation for three-dimensional forging analysis more conveniently and accurately, a new post processor was developed. For post-processing of multi-stage forging simulation, efficient data structure was proposed and applied by using STL. New file architecture was developed to handle successive and huge data efficiently, common in three-dimensional forging analysis. Since sectioning and flow tracing plays an important role in the investigation of analysis result, we developed an algorithm suitable for 4-node and 10-node tetrahedron. This flow tracing algorithm can trace and reverse-trace flow through remeshing. Developed program shows good performance and functionality. Especially, a big size problem can be handled easily due to proposed data structure and file architecture.

Analysis on the effect of color dispersion compensating layer in the three-dimensional/two-dimensional convertible display based on parallax barrier

  • Cho, Seong-Woo;Park, Jae-Hyeung;Lee, Byoung-Ho
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1599-1602
    • /
    • 2005
  • In a three-dimensional/two-dimensional convertible parallax barrier display, an additional layer compensating the color dispersion for three-dimensional display can distort displayed image in the two-dimensional mode. We analyze the effect of the color dispersion compensating layer on two-dimensional image by computer simulations.

  • PDF

Reliability and Validity of Measurement Using Smartphone-Based Goniometer of Tibial External Rotation Angle in Standing Knee Flexion

  • Jeon, In-Cheol;Kwon, Oh-Yun;Weon, Jong-Hyuck;Ha, Sung-Min;Kim, Si-Hyun
    • Physical Therapy Korea
    • /
    • v.20 no.2
    • /
    • pp.60-68
    • /
    • 2013
  • The purpose of this study was to assess the intra-rater test-retest reliability of tibial external rotation angle measurement using a smartphone-based photographic goniometer, DrGoniometer (DrG) compared to a three-dimensional motion analysis system (Vicon). The current study showed an interchangeable method using DrG to measure the tibial external rotation angle in standing knee flexion at $90^{\circ}$. Twelve healthy subjects participated in this study. A rest session was conducted 30 minutes later for within-day reliability and five days later for between-day intra-rater test-retest reliability. To assess the validity of the measurement using DrG, we used a three dimensional motion analysis system as a gold standard to measure the angle of tibial external rotation. Intra-class correlation coefficient (ICC) and the standard error of measurement (SEM) values were used to determine the within- and between- day intra-rater test-retest reliability of using DrG and a three dimensional motion analysis system. To assess validity, Pearson correlation coefficients were used for two measurement techniques. The measurement for tibial external rotation had high intra-rater test-retest reliability of within-day (ICC=.88) and between-day (ICC=.83) reliability using DrG and of within-day (ICC=.93) and between-day (ICC=.77) reliability using a three-dimentional motion analysis system. Tibial external rotation angle measurement using DrG was highly correlated with those of the three-dimensional motion analysis system (r=.86). These results represented that the tibial external rotation angle measurement using DrG showed acceptable reliability and validity compared with the use of three-dimensional motion analysis system.

A Study of Three Dimensional Flow Characteristics near the Porous Wall (다공성 방풍벽의 3차원 유동특성)

  • Kim, Sung-Hoon;Kim, Il-Hyun;Chang, Young-Bae
    • Journal of Energy Engineering
    • /
    • v.28 no.4
    • /
    • pp.19-28
    • /
    • 2019
  • A study has been done on the three dimensional turbulent flow characteristic near the porous wall. The porous holes are considered by penetrating the wall in regular arrangement, and porosity is controlled by diameter of holes. Flow characteristics near the three dimensional porous wall are compared with field test results and self-generated experimental results. FLUENT is employed for computational analysis on the effect of three dimensional porosity with flow and pressure characteristics. As a result, drag coefficient is defined and compared for three dimensional effect. The drag coefficient is mostly a function of porosity, whereas the effect of Reynolds number is minimal, and its correlation is presented in terms of three dimensional porosity.