• 제목/요약/키워드: Three-dimensional (3D) numerical analysis

검색결과 415건 처리시간 0.029초

Assessing 3D seismic damage performance of a CFR dam considering various reservoir heights

  • Karalar, Memduh;Cavusli, Murat
    • Earthquakes and Structures
    • /
    • 제16권2호
    • /
    • pp.221-234
    • /
    • 2019
  • Today, many important concrete face rockfill dams (CFRDs) have been built on the world, and some of these important structures are located on the strong seismic regions. In this reason, examination and monitoring of these water construction's seismic behaviour is very important for the safety and future of these dams. In this study, the nonlinear seismic behaviour of Ilısu CFR dam which was built in Turkey in 2017, is investigated for various reservoir water heights taking into account 1995 Kobe near-fault and far-fault ground motions. Three dimensional (3D) finite difference model of the dam is created using the FLAC3D software that is based on the finite difference method. The most suitable mesh range for the 3D model is chosen to achieve the realistic numerical results. Mohr-Coulomb nonlinear material model is used for the rockfill materials and foundation in the seismic analyses. Moreover, Drucker-Prager nonlinear material model is considered for the concrete slab to represent the nonlinearity of the concrete. The dam body, foundation and concrete slab constantly interact during the lifetime of the CFRDs. Therefore, the special interface elements are defined between the dam body-concrete slab and dam body-foundation due to represent the interaction condition in the 3D model. Free field boundary condition that was used rarely for the nonlinear seismic analyses, is considered for the lateral boundaries of the model. In addition, quiet artificial boundary condition that is special boundary condition for the rigid foundation in the earthquake analyses, is used for the bottom of the foundation. The hysteric damping coefficients are separately calculated for all of the materials. These special damping values is defined to the FLAC3D software using the special fish functions to capture the effects of the variation of the modulus and damping ratio with the dynamic shear-strain magnitude. Total 4 different reservoir water heights are taken into account in the seismic analyses. These water heights are empty reservoir, 50 m, 100 m and 130 m (full reservoir), respectively. In the nonlinear seismic analyses, near-fault and far-fault ground motions of 1995 Kobe earthquake are used. According to the numerical analyses, horizontal displacements, vertical displacements and principal stresses for 4 various reservoir water heights are evaluated in detail. Moreover, these results are compared for the near-fault and far-faults earthquakes. The nonlinear seismic analysis results indicate that as the reservoir height increases, the nonlinear seismic behaviour of the dam clearly changes. Each water height has different seismic effects on the earthquake behaviour of Ilısu CFR dam. In addition, it is obviously seen that near-fault earthquakes and far field earthquakes create different nonlinear seismic damages on the nonlinear earthquake behaviour of the dam.

Seismic performance assessment of single pipe piles using three-dimensional finite element modeling considering different parameters

  • Duaa Al-Jeznawi;Jitendra Khatti;Musab Aied Qissab Al-Janabi;Kamaldeep Singh Grover;Ismacahyadi Bagus Mohamed Jais;Bushra S Albusoda;Norazlan Khalid
    • Earthquakes and Structures
    • /
    • 제24권6호
    • /
    • pp.455-475
    • /
    • 2023
  • The present study investigates the non-linear soil-pile interaction using three-dimensional (3D) non-linear finite element models. The numerical models were validated by using the results of extensive pile load and shaking table tests. The pile performance in liquefiable and non-liquefiable soil has been studied by analyzing the liquefaction ratio, pile lateral displacement (LD), pile bending moment (BM), and frictional resistance (FR) results. The pile models have been developed for the different ground conditions. The study reveals that the results obtained during the pile load test and shaking cycles have good agreement with the predicted pile and soil response. The soil density, peak ground acceleration (PGA), slenderness ratio (L/D), and soil condition (i.e., dry and saturated) are considered during modeling. Four ground motions are used for the non-linear time history analyses. Consequently, design charts are proposed depended on the analysis results to be used for design practice. Eleven models have been used to validate the capability of these charts to capture the soil-pile response under different seismic intensities. The results of the present study demonstrate that L/D ratio slightly affects the lateral displacement when compared with other parameters. Also, it has been observed that the increasing in PGA and decreasing L/D decreases the excess pore water pressure ratio; i.e., increasing PGA from 0.1 g to 0.82 g of loose sand model, decrease the liquefaction ratio by about 50%, and increasing L/D from 15 to 75 of the similar models (under Kobe earthquake), increase this ratio by about 30%. This study reveals that the lateral displacement increases nonlinearly under both dry and saturated conditions as the PGA increases. Similarly, it is observed that the BM increases under both dry and saturated states as the L/D ratio increases. Regarding the acceleration histories, the pile BM was reduced by reducing the acceleration intensity. Hence, the pile BM decreased to about 31% when the applied ground motion switched from Kobe (PGA=0.82 g) to Ali Algharbi (PGA=0.10 g). This study reveals that the soil conditions affect the relationship pattern between the FR and the PGA. Also, this research could be helpful in understanding the threat of earthquakes in different ground characteristics.

노후화된 균일형 저수지 제체의 월류모형실험과 3차원 침투특성 (Overtopping Model Experiments and 3-D Seepage Characteristics of the Embankment of Deteriorated Homogeneous Reservoirs)

  • 이영학;이태호;이달원
    • 한국농공학회논문집
    • /
    • 제61권2호
    • /
    • pp.13-23
    • /
    • 2019
  • In this study, an overtopping model experiments and three dimensional seepage characteristics at the deteriorated homogeneous reservoirs were performed to investigate the behavior of failure for embankment and spillway transitional zone due to overtopping. The failure pattern, pore water pressure, earth pressure and settlement by overtopping were compared and analyzed. The pattern of the failure by overtopping was gradually enlarged towards reservoirs crest from the spillway transition zone at initial stage. In the rapid stage and peak stage, the width and depth of failure gradually increased, and the pattern of the failure appeared irregular and several direction of the erosion. In the early stage, the pore water pressure at spillway transitional zone was more affected as its variation and failure width increased. In the peak stage, the pore water pressure was significantly increased in all locations due to the influence of seepage. The earth pressure increased gradually according to overtopping stage. The pore pressure by the numerical analysis was larger than the experimental value, and the analysis was more likely to increase steadily without any apparent variation. The horizontal and vertical displacements were the largest at the toe of slope and at the top of the dam crest, respectively. The results of this displacement distribution can be applied as a basis for determining the position of reinforcement at the downstream slope and the crest. The collapse in the overtopping stage began with erosion of the most vulnerable parts of the dam crest, and the embankment was completely collapsed as the overtopping stage increased.

2.5 kW 급 프로펠러형 마이크로 수차 매개변수 연구 (Parametric Study of 2.5 kW Class Propeller Type Micro Hydraulic Turbine)

  • 마상범;김성;최영석;차동안;김진혁
    • 한국수소및신에너지학회논문집
    • /
    • 제31권4호
    • /
    • pp.387-394
    • /
    • 2020
  • A parametric study of a 2.5 kW class propeller type micro hydraulic turbine was performed. In order to analyze the internal flow characteristics in the hydraulic turbine, three dimensional Reynolds-averaged Navier-Stokes equations with shear stress transport turbulence model were used and the hexahedral grid system was used to construct computational domain. To secure the reliability of the numerical analysis, the grid dependency test was performed using the grid convergence index method based on the Richardson extrapolation, and the grid dependency was removed when about 1.7 million nodes were used. For the parametric study, the axial distance at shroud span (L) between the inlet guide vane and the runner, and the inlet and outlet blade angles (β1, β2) of the runner were selected as the geometric parameters. The inlet and outlet angles of the runner were defined in the 3 spans from the hub to tip, and a total of 7 geometric parameters were investigated. It was confirmed that the outlet angles of the runner had the most sensitive effect on the power and efficiency of the micro hydraulic turbine.

말뚝의 횡방향 이격거리를 고려한 터널굴착이 인접 단독말뚝 및 군말뚝에 미치는 영향에 대한 연구 (A study on the effect of tunnelling to adjacent single piles and pile groups considering the transverse distance of pile tips from the tunnel)

  • 전영진;김성희;이철주
    • 한국터널지하공간학회 논문집
    • /
    • 제17권6호
    • /
    • pp.637-652
    • /
    • 2015
  • 본 연구에서는 3차원 유한요소해석을 실시하여 말뚝에 인접한 터널시공으로 인한 말뚝의 거동을 터널로부터 말뚝선단의 횡방향 이격거리를 고려하여 분석하였다. 단독말뚝 및 간격 2.5d인 $5{\times}5$ 군말뚝을 고려하였다. 여기서 d는 말뚝의 직경을 의미한다. 수치해석에서는 순수하게 터널굴착(tunnelling-induced) 으로 인해 유발된 말뚝침하, 전단응력, 상대변위, 축력분포, 겉보기안전율 및 터널굴착 영향권을 고찰하였다. 말뚝이 터널굴착으로 인한 지반침하 영향권 내부에 존재할 경우 말뚝두부의 침하는 Greenfield 조건의 지표면 침하보다 최대 대략 111% 크게 산정되었고, 군말뚝의 경우 단독말뚝과 비교하여 말뚝침하가 크고 축력이 작게 나타났는데 이는 군말뚝내의 말뚝이 인접지반과 함께 블록(block)의 형태로 거동하는 것으로 분석되었다. 또한 말뚝의 상부에서는 상향의 마찰 저항력이 발생하고 말뚝의 하부에서는 하향의 마찰 저항력이 발생하여 순수하게 터널굴착(tunnelling-induced)으로 인해 말뚝에는 인장력을 발생시켰다. 한편 말뚝이 영향권 외부에 존재할 경우 말뚝에는 tunnelling-induced 압축력이 발생하였다. 수치해석을 통해 분석된 하중-침하 관계로부터 말뚝의 겉보기안전율을 계산한 결과 터널굴착 이전에 비해 대략 45% 감소된 것으로 나타났다. 따라서 이는 말뚝의 사용성에 심각한 문제를 유발시킬 수 있는 것으로 나타났다. 본 연구를 통해 지반침하 영향권에 따른 단독말뚝 및 군말뚝의 거동을 심도 있게 고찰하였다.

Extended-FEM for the solid-fluid mixture two-scale problems with BCC and FCC microstructures

  • Sawada, Tomohiro;Nakasumi, Shogo;Tezuka, Akira;Fukushima, Manabu;Yoshizawa, Yu-Ichi
    • Interaction and multiscale mechanics
    • /
    • 제2권1호
    • /
    • pp.45-68
    • /
    • 2009
  • An aim of the study is to develop an efficient numerical simulation technique that can handle the two-scale analysis of fluid permeation filters fabricated by the partial sintering technique of small spherical ceramics. A solid-fluid mixture homogenization method is introduced to predict the mechanical characters such as rigidity and permeability of the porous ceramic filters from the micro-scale geometry and configuration of partially-sintered particles. An extended finite element (X-FE) discretization technique based on the enriched interpolations of respective characteristic functions at fluid-solid interfaces is proposed for the non-interface-fitted mesh solution of the micro-scale analysis that needs non-slip condition at the interface between solid and fluid phases of the unit cell. The homogenization and localization performances of the proposed method are shown in a typical two-dimensional benchmark problem whose model has a hole in center. Three-dimensional applications to the body-centered cubic (BCC) and face-centered cubic (FCC) unit cell models are also shown in the paper. The 3D application is prepared toward the computer-aided optimal design of ceramic filters. The accuracy and stability of the X-FEM based method are comparable to those of the standard interface-fitted FEM, and are superior to those of the voxel type FEM that is often used in such complex micro geometry cases.

L자형 이동상수로에서 댐 붕괴파의 수치해석 (Numerical Analysis of Dam-break Waves in an L-shaped Channel with a Movable Bed)

  • 김대근;황건
    • 한국수자원학회논문집
    • /
    • 제45권3호
    • /
    • pp.291-300
    • /
    • 2012
  • 댐 붕괴 직후에 댐 붕괴 근역에서의 댐 붕괴파 및 댐 붕괴파로 인한 하상변동을 추적하기 위하여 RANS를 지배방정식으로 하는 FLOW-3D를 이용한 3차원 수치모의를 수행하였다. 특히 이동상에서의 하상변동과 그 하상변동으로 인한 홍수파의 변동을 고정상에서의 해석결과와 비교하였다. 그 해석 결과를 정리하면 다음과 같다. 첫째, L자형 실험수로에서의 홍수파 해석 및 이동상 실험수로에서의 홍수파와 하상변동 해석 결과는 해당 수리실험을 만족스럽게 재현하고 있다. 둘째, 부유사의 농도는 홍수파의 전면에서 가장 높은 값을 보이며, 하상침식은 흐름이 급변하는 댐 직하류 지점에서 가장 크게 발생한다. 수로의 상류에서 발생하는 부유사로 인해 하류에서는 침식과 퇴적이 번갈아서 발생한다. 홍수파가 도달하는 초기에는 L자형 만곡부의 내측에서 침식이 우세하게 발생하나, 시간이 지나며 침식은 점차 만곡부의 외측으로 이동하는 양상을 보인다. 셋째, L자형 이동상에서의 홍수파는 하상의 침식 및 퇴적으로 인해 고정상에서의 홍수파에 비해 그 전파가 지체되며 홍수위가 크게 상승한다.

파쇄대의 공간적 분포가 터널 거동에 미치는 영향 - 수치해석 연구 (Effect of orientation of fracture zone on tunnel behavior - Numerical Investigation)

  • 유충식;조윤규;박정규
    • 한국터널지하공간학회 논문집
    • /
    • 제15권3호
    • /
    • pp.253-270
    • /
    • 2013
  • 본 연구에서는 파쇄대의 공간적 분포 특성이 터널의 거동에 미치는 영향에 대한 내용을 다루었다. 이를 위해 발파굴착 공법이 적용되는 터널을 대상으로 다양한 파쇄대 조건을 도출하고 이에 대한 2차원 및 3차원 해석을 수행하여 파쇄대의 주향 및 경사, 터널과의 이격거리, 토피고, 측압계수 등에 대한 매개변수 연구를 실시하였다. 해석결과를 토대로 매개변수 조건에 대한 터널 변위 및 지보재 부재력의 변화경향을 고찰하였으며 그 결과 파쇄대의 경사각 및 주향에 따라 터널의 변위 및 지보재 부재력에서 큰 차이를 보였으며 전반적으로 터널의 심도가 깊어질수록 그리고 초기측압계수가 클수록 파쇄대의 공간적 분포 특성에 따른 터널 거동의 차이가 더 심화되는 것으로 나타나 대심도 터널의 경우가 저심도 터널에 비해 파쇄대의 영향이 가중될 수 있는 것으로 검토되었다.

수치해석을 통한 해상풍력 말뚝지지중력식기초의 수평거동 분석 (Numerical Study on Lateral Pile Behaviors of Piled Gravity Base Foundations for Offshore Wind Turbine)

  • 서지훈;추연욱;구정민;김영호;박재현
    • 한국지반공학회논문집
    • /
    • 제32권11호
    • /
    • pp.5-19
    • /
    • 2016
  • 본 연구에서는 해상풍력타워를 지지하는 말뚝지지중력식기초에 대한 수평거동을 분석하기 위하여 3차원 수치해석을 수행하였다. 말뚝지지중력식기초는 연약한 점토지반에 취약한 중력식기초를 보완하기 위하여 개발되었으며, 다섯본의 말뚝이 십자배열로 설치되어 수직지지력을 확보한다. 수치해석은 다음 네 가지 케이스를 모델링하여 비교하였다. 이는 a) 단말뚝 b) $3{\times}3$무리말뚝 c) 십자배열무리말뚝 d) 말뚝지지중력식기초이다. 모든 케이스는 비배수전단강도 20kPa의 단일 점토층을 모사하였으며, 수치해석결과로부터 네 가지 케이스에 대한 p-y곡선과 P-승수를 산정하였다. 말뚝 수가 증가함에 따라 무리말뚝효과가 증가하였다. 말뚝지지중력식기초의 경우, P-승수가 무리말뚝과 상이한 경향을 보였다. 응력분포를 통해 거동의 차이를 비교하였고 말뚝지지중력식기초의 수평거동은 지표면과 매트 사이의 상호 작용이 상당한 영향을 미치는 것으로 나타났다.

Flexural strengthening of RC one way solid slab with Strain Hardening Cementitious Composites (SHCC)

  • Basha, Ali;Fayed, Sabry;Mansour, Walid
    • Advances in concrete construction
    • /
    • 제9권5호
    • /
    • pp.511-527
    • /
    • 2020
  • The main aim of the current research is to investigate the flexural behavior of the reinforced concrete (RC) slabs strengthened with strain hardening cementitious composites (SHCC) experimentally and numerically. Seven RC slabs were prepared and tested under four-points loading test. One un-strengthened slab considered as control specimen while six RC slabs were strengthened with reinforced SHCC layers. The SHCC layers had different reinforcement ratios and different thicknesses. The results showed that the proposed strengthening techniques significantly increased the ultimate failure load and the ductility index up to 25% and 22%, respectively, compared to the control RC slab. Moreover, a three dimensional (3D) finite element model was proposed to analyze the strengthened RC slabs. It was found that the results of the proposed numerical model well agreed with the experimental responses. The validated numerical model used to study many parameters of the SHCC layer such as the reinforcement ratios and the different thicknesses. In addition, steel connectors were suggested to adjoin the concrete/SHCC interface to enhance the flexural performance of the strengthened RC slabs. It was noticed that using the SHCC layer with thickness over 40 mm changed the failure mode from the concrete cover separation to the SHCC layer debonding. Also, the steel connectors prevented the debonding failure pattern and enhanced both the ultimate failure load and the ductility index. Furthermore, a theoretical equation was proposed to predict the ultimate load of the tested RC slabs. The theoretical and experimental ultimate loads are seen to be in fairly good agreement.