• 제목/요약/키워드: Three-Dimensional Two-Phase Flow

검색결과 110건 처리시간 0.026초

스케일 변화에 따른 NREL PHASE VI 풍력터빈의 성능해석 (PERFORMANCE ANALYSIS OF NREL PHASE VI WIND TURBINES UNDER VARIOUS SCALE CONDITIONS)

  • 박영민;장병희
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2006년도 추계 학술대회논문집
    • /
    • pp.155-158
    • /
    • 2006
  • In the present paper, the scale effects of two-dimensional airfoil and three-dimensional wind turbine were investigated by using FLUENT software. For two dimensional analysis, flow around S809 airfoil with various Reynolds No. and Mach No. conditions were simulated. For three dimensional analysis, scaled NREL Phase VI wind turbine models from 6% to 1,600% were simulated under the same tip speed ratio condition. Finally, aerodynamic comparisons between two-dimensional flow and three dimensional wind turbine flow are made for the feasibility study of scale effect corrections. Currently, KARI(Korea Aerospace Research Institute) is preparing for the wind tunnel test of 12% NREL Phase VI wind turbine and the performance analysis of the scaled NREL wind turbine model will be validated by the wind tunnel test.

  • PDF

IDENTIFICATION OF TWO-DIMENSIONAL VOID PROFILE IN A LARGE SLAB GEOMETRY USING AN IMPEDANCE MEASUREMENT METHOD

  • Euh, D.J.;Kim, S.;Kim, B.D.;Park, W.M.;Kim, K.D.;Bae, J.H.;Lee, J.Y.;Yun, B.J.
    • Nuclear Engineering and Technology
    • /
    • 제45권5호
    • /
    • pp.613-624
    • /
    • 2013
  • Multi-dimensional two-phase phenomena occur in many industrial applications, particularly in a nuclear reactor during steady operation or a transient period. Appropriate modeling of complicated behavior induced by a multi-dimensional flow is important for the reactor safety analysis results. SPACE, a safety analysis code for thermal hydraulic systems which is currently being developed, was designed to have the capacity of multi-dimensional two-phase thermo-dynamic phenomena induced in the various phases of a nuclear system. To validate the performance of SPACE, a two-dimensional two-phase flow test was performed with slab geometry of the test section having a scale of $1.43m{\times}1.43m{\times}0.11m$. The test section has three inlet and three outlet nozzles on the bottom and top gap walls, respectively, and two outlet nozzles installed directly on the surface of the slab. Various kinds of two-dimensional air/water flows were simulated by selecting combinations of the inlet and outlet nozzles. In this study, two-dimensional two-phase void fraction profiles were quantified by measuring the local gap impedance at 225 points. The flow conditions cover various flow regimes by controlling the flow rate at the inlet boundary. For each selected inlet and outlet nozzle combination, the water flow rate ranged from 2 to 20 kg/s, and the air flow rate ranged from 2.0 to 20 g/s, which corresponds to 0.4 to 4 m/s and 0.2 to 2.3 m/s of the superficial liquid and gas velocities based on the inlet port area, respectively.

2상유동장 내 3차원 밀도 분포 재건을 위한 토모그래피 기법의 성능 비교 분석 (Comparison and Analysis of Tomography Methods for Reconstruction of Three-dimensional Density Distributions in Two-phase Flows)

  • 고한서;김용재
    • 비파괴검사학회지
    • /
    • 제22권5호
    • /
    • pp.545-556
    • /
    • 2002
  • Algebraic reconstruction technique (ART)과 multiplicative algebraic reconstruction technique (MART)이라는 토모그래피 방법을 이용하여 2상유동에서 기포의 거동을 배침투적으로 분석하였다. 먼저, 컴퓨터 합성 영상장으로 환상유통과 기포유동을 제작하여 2차원 단면의 재건을 시도하였다. 2상유동의 보다 정확한 결과들을 얻기 위하여 두가지 토모그래피 방법이 비교되었다. 그리고, 2상유동에서 기포의 거동을 3차원으로 분석하기 위하여 2개와 3개의 기포가 존재하는 3차원 합성 영상장으로부터 2차원 단면에서 보다 정확한 결과를 보인 MART 재건법에 의해서 밀도 분포 해석을 수행하였다.

DEVELOPMENT AND PRELIMINARY ASSESSMENT OF A THREE-DIMENSIONAL THERMAL HYDRAULICS CODE, CUPID

  • Jeong, Jae-Jun;Yoon, Han-Young;Park, Ik-Kyu;Cho, Hyoung-Kyu;Lee, Hee-Dong
    • Nuclear Engineering and Technology
    • /
    • 제42권3호
    • /
    • pp.279-296
    • /
    • 2010
  • For the analysis of transient two-phase flows in nuclear reactor components, a three-dimensional thermal hydraulics code, named CUPID, has been developed. The CUPID code adopts a two-fluid, three-field model for two-phase flows, and the governing equations were solved over unstructured grids, which are very useful for the analysis of flows in complicated geometries. To obtain numerical solutions, the semi-implicit numerical method for the REALP5 code was modified for an application to unstructured grids, and it has been further improved for enhanced accuracy and fast running. For the verification of the CUPID code, a set of conceptual problems and experiments were simulated. This paper presents the flow model, the numerical solution method, and the results of the preliminary assessment.

Experimental Analysis of Unsteady Bubble Behaviors Using Three-Dimensional Tomography

  • Ko, Han-Seo;Kim, Yong-Jae
    • 비파괴검사학회지
    • /
    • 제25권6호
    • /
    • pp.431-438
    • /
    • 2005
  • Bubble behaviors in a circular tube have been analyzed numerically and experimentally by a three-dimensional tomography method, Initially, a multiplicative algebraic reconstruction technique (MART) which showed better results for previous studies of numerical simulations has been performed to confirm the accuracy of the three-dimensional reconstruction for the two-phase flow using a computer-synthesized phantom, Then, bubble behaviors have been investigated experimentally by the three-dimensional MART method using real projected data captured simultaneously by a laser and three CCD cameras for three angles of view, Also, the transient reconstructions have been attempted to analyze the real-time oxygen-bubble movements in water by the interval of 1/30 second.

Experimental Study on the Unsteady Flow Characteristics for the Counter-Rotating Axial Flow Fan

  • Cho, L.S.;Lee, S.W.;Cho, J.S.;Kang, J.S.
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2008년 영문 학술대회
    • /
    • pp.790-798
    • /
    • 2008
  • Counter-rotating axial flow fan(CRF) consists of two counter-rotating rotors without stator blades. CRF shows the complex flow characteristics of the three-dimensional, viscous, and unsteady flow fields. For the understanding of the entire core flow in CRF, it is necessary to investigate the three-dimensional unsteady flow field between the rotors. This information is also essential to improve the aerodynamic characteristics and to reduce the aerodynamic noise level and vibration characteristics of the CRF. In this paper, experimental study on the three-dimensional unsteady flow of the CRF is performed at the design point(operating point). Flow fields in the CRF are measured at the cross-sectional planes of the upstream and downstream of each rotor using the $45^{\circ}$ inclined hot-wire. The phase-locked averaged hot-wire technique utilizes the inclined hot-wire, which rotates successively with 120 degree increments about its own axis. Three-dimensional unsteady flow characteristics such as tip vortex, secondary flow and tip leakage flow in the CRF are shown in the form of the axial, radial and tangential velocity vector plot and velocity contour. The phase-locked averaged velocity profiles of the CRF are analyzed by means of the stationary unsteady measurement technique. At the mean radius of the front rotor inlet and the outlet, the phase-locked averaged velocity profiles show more the periodical flow characteristics than those of the hub region. At the tip region of the CRF, the axial velocity is decreased due to the boundary layer effect of the fan casing and the tip vortex flow. The radial and the tangential velocity profiles show the most unstable and unsteady flow characteristics compared with other position of rotors. But, the phase-locked averaged velocity profiles of the downstream of the rear rotor show the aperiodic flow pattern due to the mixture of the front rotor wake period and the rear rotor rotational period.

  • PDF

Turbulent properties in a mixed statistically stationary flow

  • Baek, Tae-Sil;Doh, Deog-Hee
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제37권7호
    • /
    • pp.729-736
    • /
    • 2013
  • The turbulent properties in a mixed statistically stationary flow were investigated experimentally by a pseudo stereoscopic PIV. In order to validate the experimental results, the profiles of the turbulent kinetic energy were evaluated with the flow features. A mechanical agitator having 6 blades was installed at the bottom of the mixing tank (D=60cm, H=60cm). The agitator was rotated with 80rpm clockwise and counter-clockwise. For the measurements, three cameras were used and all were synchronized. The images captured by one of the three cameras was used for the measurement of rotational speed, and the images captured by the other two cameras were used to measure three dimensional components of velocity vectors. All vectors captured at the same rotational angle were phase averaged to construct three-dimensional vector fields to reconstruct the spatial distribution of the flow properties. It was seen that the jet scrolling along the tank was the main source of mixing.

비정렬격자 2-유체 3-상 유동 해석 기법 (NUMERICAL METHOD FOR THE TWO-FLUID THREE-FIELD MODEL ON AN UNSTRUCTURED MESH)

  • 김종태;박익규;조형규;윤한영;정재준
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2007년도 추계 학술대회논문집
    • /
    • pp.243-248
    • /
    • 2007
  • A three-dimensional (3D) unstructured hydrodynamic solver for transient two-phase flows has been developed. A two-fluid three-field model was adopted for the two-phase flows. The three fields represent a continuous liquid, an entrained liquid, and a vapour field. The hydrodynamic solver is for the 3D component of a nuclear system code and the component-scale analysis tools for transient two-phase flows. The finite volume method and unstructured grid are adopted, which are useful for the flows in a complicated geometry. The semi-implicit ICE (Implicit Continuous-fluid Eulerian) numerical scheme has been adapted to the unstructured non-staggered grid. This paper presents the numerical method and the preliminary results of the calculations. The results show that the numerical scheme is robust and predicts the phase change and the flow transitions due to boiling and flashing problems well.

  • PDF

비선형 위상공간에서의 기포 분율 신호의 끌개밀도분식을 이용한 수직 상향 이상유동의 유동패턴분류 (Flow Pattern Identification of Vertical Upward Two-Phase Flow Using the Attractor-Density-Map Analysis of the Void Fraction Signal in the Nonlinear Phase Space)

  • 김남석;이재영
    • 대한기계학회논문집B
    • /
    • 제28권11호
    • /
    • pp.1398-1406
    • /
    • 2004
  • The nonlinear signals from an impedance meter for the area average void fraction in two-phase flow have been analyzed to construct a phase space trajectory. The pseudo phase space was constructed with the time delay and proper dimensions. The time delay and the embedding dimension were chosen by the average mutual information and by the false nearest neighborhood, respectively. The attractor-density-map of projected states was used to produce the two dimensional probability distribution functions (2D-PDF). Since the developed 2D-PDF showed clear distinction of the flow patterns, the flow regime identification was made with three rules and with the 2D-PDF. Also, the transition criteria of Mishima-Ishii agree well with the present results.

DEVELOPMENT OF THE MULTI-DIMENSIONAL HYDRAULIC COMPONENT FOR THE BEST ESTIMATE SYSTEM ANALYSIS CODE MARS

  • Bae, Sung-Won;Chung, Bub-Dong
    • Nuclear Engineering and Technology
    • /
    • 제41권10호
    • /
    • pp.1347-1360
    • /
    • 2009
  • A multi-dimensional component for the thermal-hydraulic system analysis code, MARS, was developed for a more realistic three-dimensional analysis of nuclear systems. A three-dimensional and two-fluid model for a two-phase flow in Cartesian and cylindrical coordinates was employed. The governing equations and physical constitutive relationships were extended from those of a one-dimensional version. The numerical solution method adopted a semi-implicit and finite-difference method based on a staggered-grid mesh and a donor-cell scheme. The relevant length scale was very coarse compared to commercial computational fluid dynamics tools. Thus a simple Prandtl's mixing length turbulence model was applied to interpret the turbulent induced momentum and energy diffusivity. Non drag interfacial forces were not considered as in the general nuclear system codes. Several conceptual cases with analytic solutions were chosen and analyzed to assess the fundamental terms. RPI air-water and UPTF 7 tests were simulated and compared to the experimental data. The simulation results for the RPI air-water two-phase flow experiment showed good agreement with the measured void fraction. The simulation results for the UPTF downcomer test 7 were compared to the experiment data and the results from other multi-dimensional system codes for the ECC delivery flow.