• Title/Summary/Keyword: Three-Dimensional Boundary Layer

Search Result 198, Processing Time 0.027 seconds

Comparison of several computational turbulence models with full-scale measurements of flow around a building

  • Wright, N.G.;Easom, G.J.
    • Wind and Structures
    • /
    • v.2 no.4
    • /
    • pp.305-323
    • /
    • 1999
  • Accurate turbulence modeling is an essential prerequisite for the use of Computational Fluid Dynamics (CFD) in Wind Engineering. At present the most popular turbulence model for general engineering flow problems is the ${\kappa}-{\varepsilon}$ model. Models such as this are based on the isotropic eddy viscosity concept and have well documented shortcomings (Murakami et al. 1993) for flows encountered in Wind Engineering. This paper presents an objective assessment of several available alternative models. The CFD results for the flow around a full-scale (6 m) three-dimensional surface mounted cube in an atmospheric boundary layer are compared with recently obtained data. Cube orientations normal and skewed at $45^{\circ}$ to the incident wind have been analysed at Reynolds at Reynolds number of greater than $10^6$. In addition to turbulence modeling other aspects of the CFD procedure are analysed and their effects are discussed.

Experimental Study on the Flow Behind an Axisymmetric Backward-Facing Step (축대칭 하향단 흐름에 대한 실험적 연구)

  • 김경천;부정숙;양종필
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.9
    • /
    • pp.2463-2476
    • /
    • 1994
  • Local mean fluctuating velocity components were measured in the separating and reattaching axisymmetrc region of turbulent boundary layer over the wall of convex cylinders placed in a water tunnel by using 2-color 4-beam fiber optics laser Doppler velocimetry. Measurements were made with three different diameters of cylinders with four different diameters of cylinders with four different diameter of the obstructions. The range of Reynolds number based on step height was between 5,000 to 25,200. The study demonstrates that the reattachment length decreases with decreasing cylinder radius and is always shorter than that for the two-dimensional backward-facing step flow at the condition of the same step height. It was also observed that the turbulent kinetic energy in the recirculating region increases with an increases in the radius of convex curvature. The measured velocity field suggests that the transverse curvature can effect definitely the formation of corner eddy.

Secondary flow Control in the Turbine Cascade with the Three-Dimensional Modification of Blade Leading Edge (블레이드 앞전 3차원 형상 변형에 의한 터빈 캐스케이드 내의 이차유동 제어)

  • Kim, Jeong-Rae;Moon, Young-June;Chung, Jin-Tack
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.11
    • /
    • pp.1552-1558
    • /
    • 2002
  • The blade leading edge is modified to control the secondary flow generated in the turbine cascade with fence by intensifying the suction side branch of the horseshoe vortex. The incompressible Navier-Stokes equations are numerically solved with a high Reynolds number k-$\varepsilon$ turbulence closure model for investigating the vortical flows in the turbine cascade. The computational results of total pressure loss coefficients in the wake region are first compared with experiments for validation. The structure and strength of the passage vortex near the suction surface are examined by testing various geometrical parameters of the turbine blade leading edge.

Numerical simulation of flow past 2D hill and valley

  • Chung, Jaeyong;Bienkiewicz, Bogusz
    • Wind and Structures
    • /
    • v.7 no.1
    • /
    • pp.1-12
    • /
    • 2004
  • Numerical simulation of flow past two-dimensional hill and valley is presented. Application of three turbulence models - the standard and modified (Kato-Launder) $k-{\varepsilon}$ models and standard $k-{\omega}$ model - is discussed. The computational methodology is briefly described. The mean velocity and turbulence intensity profiles, obtained from numerical simulations of flow past the hill, are compared with the experimental data acquired in a boundary-layer wind tunnel at Colorado State University. The mean velocity, turbulence kinetic energy and Reynolds shear stress profiles from numerical simulations of flow past the valley are compared with published experimental data. Overall, the results of simulations employing the standard $k-{\varepsilon}$ model were found to be in a better agreement with the experimental data than those obtained using the modified $k-{\varepsilon}$ model and the $k-{\omega}$ model.

A Study on Calibration of Heat Flux Sensor by using Convective Heat Transfer (대류방식을 이용한 열유속센서의 검정에 관한 연구)

  • Yang, Hoon-Cheul;Song, Chul-Hwa;Kim, Moo-Hwan
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1358-1363
    • /
    • 2004
  • The objective of this work is to propose calibration facility in which a thin film type heat flux sensor can be calibrated under convective flow condition by using a small wind tunnel with the constant temperature plate condition. A small wind tunnel has been built to produce a boundary layer shear flow above a constant temperature copper plate. 12-independent copper blocks, thin film heaters, insulators and temperature controllers were used to keep the temperature of flat plate constant at a specified temperature. Three commercial thin film-type heat flux sensors were tested. Convective calibrations of these gages were performed over the available heat flux range of $1.4{\sim}2.5kW/m^2$. The uncertainty in the heat flux measurements in the convective-type heat flux calibration facility was ${\pm}2.07%$. Non-dimensional sensitivity is proposed to compare the sensitivity calibrated by manufacturer and that of experiment conducted in this study.

  • PDF

Horseshoe Vortices variation around a Circular Cylinder with Upstream Cavity (상류 캐비티로 인한 실린더 주위의 유동장 변화)

  • Kang, Kyung-Jun;Kim, Dong-Beum;Song, Seung-Jin
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2625-2630
    • /
    • 2008
  • Horseshoe vortices are formed at the junction of an object immersed in fluid-flow and endwall plate as a result of three-dimensional boundary layer separation. This study shows preliminary results of the kinematics of such horseshoe vortices around a circular cylinder with a cavity (slot) placed upstream to disturb the primary separation line. Through the cavity, no mass flow addition (blowing) or reduction (suction) is applied. The upstream cavity weakens the adverse pressure gradient before the cavity. With the upstream cavity, a single vortex is found to form immediately upstream of the cylinder whereas a typical two vortex system is observed in the absence of the cavity. Furthermore, the strength of the single vortex tends to be reduced, resulting from the interaction with the separated flow convecting directly towards the leading edge of the cylinder.

  • PDF

Numerical Investigations on Vortical Flows and Turbulence beneath the Free Surface around Bow (선수부 자유 표면 부근의 와 유동과 난류 특성에 관한 수치적 연구)

  • Uh-Cheul Jeong;Yasuaki Doi;Kasu-hiro Mori
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.35 no.1
    • /
    • pp.15-23
    • /
    • 1998
  • Characteristics of turbulence beneath the free surface around a blunt bow are numerically-investigated. Three dimensional wavier-Stokes and continuity equations are solved for the simulations.. The Large Eddy Simulation(LES) with the external disturbance is performed to simulate the turbulent free surface flow called sub-breaking wave. The result shows that the free surface fluctuates beyond a certain critical condition and the characteristics of the fluctuation are similar to the turbulent boundary layer flow around a solid body.

  • PDF

Evaluation of Turbulence Models for A Compressor Rotor (축류압축기 회전차유동에 대한 난류모델의 성능평가)

  • Lee, Yong-Kab;Kim, Kwang-Yong
    • 유체기계공업학회:학술대회논문집
    • /
    • 1999.12a
    • /
    • pp.179-186
    • /
    • 1999
  • Three-dimensional flow analysis is implemented to investigate the flow through transonic axial-flow compressor rotor(NASA R67), and to evaluate the performances of k-$\epsilon$ and Baldwin-Lomax turbulence models. A finite volume method is used for spatial discretization. And, the equations are solved implicitly in time with the use of approximate factorization. Upwind difference scheme is used for inviscid terms, but viscous terms are centrally differenced. The flux-difference-splitting of Roe is used to obtain fluxes at the cell faces. Numerical analysis is performed near peak efficiency and near stall. And, the results are compared with the experimental data for NASA R67 rotor. Blade-to-Blade Mach number distributions are compared to confirm the accuracy of the code. From the results, we conclude that k-$\epsilon$ model is better for the calculation of flow rate and efficiency than Baldwin-Lomax model. But, the predictions for Mach number and shock structure are almost same.

  • PDF

Shock wave instability in a bent channel with subsonic/supersonic exit

  • Kuzmin, Alexander
    • Advances in aircraft and spacecraft science
    • /
    • v.6 no.1
    • /
    • pp.19-30
    • /
    • 2019
  • Two- and three-dimensional turbulent airflows in a 9-degrees-bent channel are studied numerically. The inner surfaces of upper and lower walls are parallel to each other upstream and downstream of the bend section. The free stream is supersonic, whereas the flow at the channel exit is either supersonic or subsonic depending on the given backpressure. Solutions of the Reynolds-averaged Navier-Stokes equations are obtained with a finite-volume solver ANSYS CFX. The solutions reveal instability of formed shock waves and a flow hysteresis in considerable bands of the free-stream Mach number at zero and negative angles of attack. The instability is caused by an interaction of shocks with the expansion flow formed over the convex bend of lower wall.

An Analysis on 3-Dimensional Temperature Distribution of Jet Vanes for a Thrust Vector Control (추력방향조종용 제트베인의 3차원 온도분포 해석)

  • Hwang, Ki-Young
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.283-291
    • /
    • 2011
  • A computational investigation has been carried out to study the heat transfer characteristics of jet vane assembly used for the thrust vector control(TVC) of a vertical launch motor. In this study, the coefficients of convective heat transfer on the jet vane are calculated using the solutions of thermal boundary-layer equation and several semi-empirical equations. The calculation of 3-dimensional temperature distribution for the jet vane assembly was performed using the softwares called PATRAN and ABAQUS. The accuracy of the present numerical method is verified by comparing with the measured and calculated temperatures within jet vane shaft. The temporal variation of jet vane temperatures for three deflection angles(0o, 12.5o, 25o) was discussed.

  • PDF