• Title/Summary/Keyword: Three phase PWM-inverter

Search Result 238, Processing Time 0.025 seconds

Bus Clamping PWM Based Hysteresis Current Controlled VSI Fed Induction Motor Drive with Nearly Constant Switching Frequency

  • Peter, Joseph;Mohammed Shafi, KP;Ramchand, Rijil
    • Journal of Power Electronics
    • /
    • v.17 no.6
    • /
    • pp.1523-1534
    • /
    • 2017
  • A Current Error Space Phasor (CESP) based hysteresis controller with online computation of the boundary for two-level inverter fed Induction Motor (IM) drives is presented in this paper. The stator voltages estimated along the ${\alpha}$-and ${\beta}$-axes and the orthogonal current error components of the motor are used in the online computation of the hysteresis boundary. All of the inherent benefits of space phasor based hysteresis controllers such as its quick dynamic response and nearby voltage vector switching are present in the proposed scheme with the added benefit of suppressing switching frequency variations. The similarity in the frequency spectrum of the phase voltage obtained at the output of the inverter using the proposed scheme and Bus Clamping Pulse Width Modulation (BCPWM) based drive is justified with the help of extensive MATLAB SIMULINK simulations. The controller is experimentally verified with a three phase, 2.2 kW IM drive for steady state and transient conditions and the obtained results match the simulation results.

A Study on LLCL Filter to Reduce Harmonic Current of Grid Connected Power Inverter (계통연계형 인버터의 고조파 전류저감을 위한 LLCL 필터에 관한 연구)

  • An, Byoung-Woong;Hong, Chang-Pyo;Kim, Hag-Wone;Cho, Kwan-Yuhl;Lim, Byung-Kuk
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.1
    • /
    • pp.64-70
    • /
    • 2014
  • In this paper, the new LLCL filter is proposed for grid connected three-phase PWM inverter for passive damping. LLCL filter inserts a small inductor in the branch of the capacitor of the traditional LCL filter to compose a series resonant circuit to reduce the switching-frequency component on grid current. Using LLCL filter, the switching-frequency current ripple components can be attenuated much better than the LCL filter, leading to a decrease in the total inductance. However, the resonance phenomena caused by zero impedance from the addition of LC branch in LLCL filter can be a big problem. Resonance phenomena of LLCL filter can be a source of grid system instability, so proper damping methods are required. However, it is difficult to apply a passive damping method in the conventional LLCL filter, because the damping resistor increase impedance of the LC branch. Therefore, switching frequency component of grid current can not much attenuated by low Q of LC series resonance effect. In this paper, a new LLCL filter is proposed to overcome the conventional LLCL filter with passive damping. The validity of the proposed method is proven by simulation and experimental result.

A Three-phase Current-fed DC-DC Converter with Active Clamp (연료전지용 3상 전류형 능동클램프 DC-DC 컨버터)

  • Cha, Han-Ju;Choi, Jung-Wan;Yoon, Gi-Gab
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.12 no.6
    • /
    • pp.456-464
    • /
    • 2007
  • This paper proposes a novel three-phase current-fed active clamp DC-DC converter for fuel cells. A single common active clamp branch is used to limit transient voltage across the three-phase full bridge and to realize zero-voltage switching(ZVS) in all switches. To apply for the power generation system current-fed type has been combined with the three-phase power conversion system. The proposed approach has the following advantages: an increase (by a factor of three) of input current and output voltage chopping frequencies; lower RMS current through the inverter switches with higher power transfer capability; reduction in size of reactive later components and the power conditioning system; better transformer utilization; increase of the system reliability. Therefore, the proposed three-phase current-fed active clamp DC-DC converter is appropriate for the boost type DC-DC converter for fuel cells and also applicable for the photovoltaic and battery charge system. The paper details the analysis, simulation and hardware implementation of the proposed system. Finally, experimental results with the proposed PWM strategy demonstrate the feasibility of the proposed scheme on a 500W prototype converter.

DSVPWM Method for Improving the Efficiency of Three-phase Three Level NPC & T-type Inverter (삼상 3레벨 NPC 인버터와 T-type 인버터의 효율개선을 위한 DSVPWMx 적용 및 해석)

  • Shin, Hyunjin;Park, Juyoung;Choi, Jaeho
    • Proceedings of the KIPE Conference
    • /
    • 2014.11a
    • /
    • pp.113-114
    • /
    • 2014
  • 대용량 분산 발전원이 증가하면서 이러한 대용량 분산 발전을 효율적으로 운전하기 위한 많은 연구가 진행되고 있다. 본 논문에서는 멀티레벨 인버터 토폴로지 중 3L-NPC와 3L-T-type 인버터에 DSVPWMx(DSVPWMP, DSVPWMN, DSVPWMPN0, DSVPWMPN1, DSVPWMPN2, DSVPWMPN3)를 적용하였을 때 두 개의 멀티레벨 인버터에서 발생하는 효율의 차이를 비교하였다. 이를 검증하기 위한 방법으로 Psim Thermal Module을 활용하여 회로를 구성하고 각 PWM방식에서 전압변조비에 따른 효율을 비교 분석하였다.

  • PDF

A driving method of two-PMSMs using a two-level three-leg three-phase voltage source inverter (하나의 2-level 3-leg 인버터를 이용한 3상 및 단상 표면부착형 영구자석 동기 전동기의 가변속 운전)

  • Park, Da-Hye;Kim, Min;Kim, Mi-Seong;Lee, Wook-Jin
    • Proceedings of the KIPE Conference
    • /
    • 2020.08a
    • /
    • pp.403-404
    • /
    • 2020
  • 본 논문에서는 단일 2-level 3-leg 전압형 인버터를 사용하여 직렬 연결된 3상 및 단상 표면부착형 영구자석 동기전동기(SPMSM)를 가변속 운전하는 기법을 제안한다. 일반적으로 두 영구자석 동기전동기를 독립적으로 가변속 운전하기 위해서는 각각의 인버터가 필요하지만, 본 논문은 옵셋(Offset) 전압을 사용한 전압 펄스 폭 변조(PWM) 방식으로 인버터를 제어하여 단일 인버터를 사용한 3상 및 단상 전동기 동시 운전이 가능하다. 제안된 방식은 전력용 반도체 소자 수를 줄여 전동기 구동시스템의 가격을 절감시킬 수 있으며, PLECS 시뮬레이션을 통하여 제안된 토폴로지의 유효성을 검증하였다.

  • PDF

Three-Phase PWM Inverter and Rectifier with Two-Switch Auxiliary Resonant DC Link Snubber-Assisted

  • Nagai Shinichiro;Sato Shinji;Matsumoto Takayuki
    • Journal of Power Electronics
    • /
    • v.5 no.3
    • /
    • pp.233-239
    • /
    • 2005
  • In this paper, a new conceptual circuit configuration of a 3-phase voltage source, soft switching AC-DC-AC converter using an IGBT module, which has one ARCPL circuit and one ARDCL circuit, is presented. In actuality, the ARCPL circuit is applied in the 3-phase voltage source rectifier side, and the ARDCL circuit is in the inverter side. And more, each power semiconductor device has a novel clamp snubber circuit, which can save the power semiconductor device from voltage and current across each power device. The proposed soft switching circuits have only two active power semiconductor devices. These ARCPL and ARDCL circuits consist of fewer parts than the conventional soft switching circuit. Furthermore, the proposed 3-phase voltage source soft switching AC-DC-AC power conversion system needs no additional sensor for complete soft switching as compared with the conventional 3-phase voltage source AC-DC-AC power conversion system. In addition to this, these soft switching circuits operate only once in one sampling term. Therefore, the power conversion efficiency of the proposed AC-DC-AC converter system will get higher than a conventional soft switching converter system because of the reduced ARCPL and ARDCL circuit losses. The operation timing and terms for ARDCL and ARCPL circuits are calculated and controlled by the smoothing DC capacitor voltage and the output AC current. Using this control, the loss of the soft switching circuits are reduced owing to reduced resonant inductor current in ARCPL and ARDCL circuits as compared with the conventional controlled soft switching power conversion system. The operating performances of proposed soft switching AC-DC-AC converter treated here are evaluated on the basis of experimental results in a 50kVA setup in this paper. As a result of experiment on the 50kVA system, it was confirmed that the proposed circuit could reduce conduction noise below 10 MHz and improve the conversion efficiency from 88. 5% to 90.5%, when compared with the hard switching circuit.

Grid faults characteristics simulation of inverter-fed induction generator (인버터 부착형 농형 유도발전기의 계통고장특성 모의)

  • Hong, Jitae;Kwon, Soonman;Kim, Chunkyung;Lee, Jongmoo;Cheon, Jongmin;Kim, Hong-Ju;Kim, Heeje
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.43.1-43.1
    • /
    • 2011
  • The detail simulation modeling of fully-fed induction generator is investigated through PC based MATLAB/Simulink environment. Generator's stator currents are controlled by indirect vector control method. In this method, generator side converter controls the maximum excitation (air gap flux) by stator d-axis current and controls generator torque by stator q-axis current. Induction generator speed is controlled by tip speed ratio (TSR) upon the wind speed variations in order to generate the maximum output power. The generator torque model is specified as a 3-blade wind turbine with rating, then, the model is simulated under normal operating condition and three different fault conditions. The matlab model designed for fully-fed induction generator based wind farm provides good performance under normal and grid fault conditions. It provides good results for different pwm techniques and fault conditions except the single-phase line to ground fault, which should be verified with real time data from wind farms.

  • PDF

A Study on the Power Factor Improvement of DC Power Regenerating Systems Using SVPWM (SVPWM을 이용한 직류전력 회생시스템의 역률개선에 관한 연구)

  • Ko, Young-Min;Chae, Soo-Yong;Seo, Young-Min;Jeong, Dae-Taek;Bae, Young-Wook;Hong, Soon-Chan
    • Proceedings of the KIPE Conference
    • /
    • 2007.07a
    • /
    • pp.196-198
    • /
    • 2007
  • In the substations for traction systems and the large-scale discharging system of secondary batteries, the voltage of DC bus line goes up by the regenerated energy and the energy is usually wasted in resistor for system stability. This paper proposes the DC power regenerating system using a three phase PWM inverter. The proposed system can regenerate the excessive DC power from DC bus line to AC supply and control the power factor of AC supply to unity. To implement unity power factor, the magnitude of the inverter output voltage should be higher than that of AC supply and therefore SVPWM technique is adopted. Computer simulations are carried out to verify the validity of the proposed system.

  • PDF

Wind Energy Interface to Grid with Load Compensation by Diode Clamped Multilevel Inverters

  • Samuel, Paulson;Naik, M. Kishore;Gupta, Rajesh;Chandra, Dinesh
    • Journal of Power Electronics
    • /
    • v.14 no.2
    • /
    • pp.271-281
    • /
    • 2014
  • Fluctuating wind conditions necessitate the use of a variable speed wind turbine (VSWT) with a AC/DC/AC converter scheme in order to harvest the maximum power from the wind and to decouple the synchronous generator voltage and frequency from the grid voltage and frequency. In this paper, a combination of a three phase diode bridge rectifier (DBR) and a modified topology of the diode clamped multilevel inverter (DCMLI) has been considered as an AC/DC/AC converter. A control strategy has been proposed for the DCMLI to achieve the objective of grid interface of a wind power system together with local load compensation. A novel fixed frequency current control method is proposed for the DCMLI based on the level shifted multi carrier PWM for achieving the required control objectives with equal and uniform switching frequency operation for better control and thermal management with the modified DCMLI. The condition of the controller gain is derived to ensure the operation of the DCMLI at the fixed frequency of the carrier. The converter current injected into the distribution grid is controlled in accordance with the wind power availability. In addition, load compensation is performed as an added facility in order to free the source currents being fed from the grid of harmonic distortion, unbalance and a low power factor even though the load may be unbalanced, non-linear and of a poor power factor. The results are validated using PSCAD/EMTDC simulation studies.

Design of BLDC Motor Controller for Electric Power Wheelchair

  • Chu, Jun-Uk;Moon, In-Hyuk;Choi, Gi-Won;Ryu, Jei-Cheong;Mun, Mu-Seong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1509-1512
    • /
    • 2003
  • The electric power wheelchair needs to control motor torque and speed for responding to variable actions given by handling a joystick. In this paper a DSP-based BLDC motor controller using a single dc-link current sensor is presented for electric power wheelchair. It is composed by a DSP processor and three-phase inverter module. To control torque, high speed current control is achieved by the PI controller and pulse width modulation (PWM) signals with 25 kHz carrier frequency, which is performed by 200 ${\mu}sec$ cycle. The speed controller computes the new direct current reference from the speed error and the PI control equation. The displacement value by handling the joystick is converted to reference speeds of right and left wheel motors using nonholonomic wheelchair kinematics. Experimental results show that the presented control system is enough to implement a speed servo in wheelchair driving.

  • PDF