• Title/Summary/Keyword: Three dimensional measuring machine

Search Result 43, Processing Time 0.021 seconds

A new method to measure the accuracy of intraoral scanners along the complete dental arch: A pilot study

  • Iturrate, Mikel;Lizundia, Erlantz;Amezua, Xabier;Solaberrieta, Eneko
    • The Journal of Advanced Prosthodontics
    • /
    • v.11 no.6
    • /
    • pp.331-340
    • /
    • 2019
  • PURPOSE. The purpose of this study is to assess the accuracy of three intraoral scanners along the complete dental arch and evaluate the feasibility of the assessment methodology for further in vivo analysis. MATERIALS AND METHODS. A specific measurement pattern was fabricated and measured using a coordinate measuring machine for the assessment of control distances and angles. Afterwards, the pattern was placed and fixed in replica of an upper jaw for their subsequent scans (10 times) using 3 intraoral scanners, namely iTero Element1, Trios 3, and True Definition. 4 reference distances and 5 angles were measured and compared with the controls. Trueness and precision were assessed for each IOS: trueness, as the deviation of the measures from the control ones, while precision, as the dispersion of measurements in each reference parameter. These measurements were carried out using software for analyzing 3-dimensional data. Data analysis software was used for statistical and measurements analysis (α=.05). RESULTS. Significant differences (P<.05) were found depending on the intraoral scanner used. Best trueness values were achieved with iTero Element1 (mean from 10 ± 7 ㎛ to 91 ± 63 ㎛) while the worst values were obtained with Trios3 (mean from 42 ± 23 ㎛ to 174 ± 77 ㎛). Trueness analysis in angle measurements, as well as precision analysis, did not show conclusive results. CONCLUSION. iTero Element1 was more accurate than the current versions of Trios3 and True Definition. Importantly, the proposed methodology is considered reliable for analyzing accuracy in any dental arch length and valid for assessing both trueness and precision in an in vivo study.

Experimental Analysis for Core Losses Prediction in Electric Machines by Using Soft Magnetic Composite (복합 연자성 소재의 전동기 코어손실 예측을 위한 실험적 분석)

  • Park, Eui-Jong;Kim, Yong-Jae
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.3
    • /
    • pp.471-476
    • /
    • 2021
  • Soft magnetic composite (SMC) materials based on powder metallurgy have a number of advantages over the conventional electrical steel sheets commonly used in electric machines. Thus, technologies related to these materials have shown significant improvement in recent years. In general, SMCs are magnetically isotropic owing to the shape of the powder, which makes them suitable for the construction of electric machines with three-dimensional flux and complex structures. However, the materials with isotropic magnetic properties (such as SMCs) have complex vector hysteresis; thus, it is very difficult to predict accurate loss properties. Therefore, we manufactured ring-type specimens of electrical steel sheets and SMC, which analyzed their magnetic properties according to the specimen size, and performed the electromagnetic field analysis of a high-speed permanent magnet (PM) motor driven at 800 Hz or higher using the measured magnetic information to compare the core loss of the motor. The reliability of this paper has been verified by measuring the efficiency after manufacturing the motor.

THE EFFECT OF TEMPERATURE CHANGES ON THE PHYSICAL PROPERTIES OF POSTERIOR COMPOSITE RESINS (구치부용 복합 레진 가열시 물리적 성질의 변화에 관한 실험적 연구)

  • Park, Yeon-Hong;Min, Byung-Soon;Choi, Ho-Young;Park, Sung-Jin
    • Restorative Dentistry and Endodontics
    • /
    • v.14 no.1
    • /
    • pp.41-56
    • /
    • 1989
  • The purpose of this study was to examine the effect of temperature dependence of the behavior on the physical properties of posterior composite resins. Three light cure posterior composite resins (Heliomolar, Litefil-P, and P-50) and one chemical cure posterior composite resin (Bisfil-II) were used as experimental materials. Composite resin was placed in a cylindrical brass mold (2.5 mm high and 6.5 mm inside diameter) that was rested on a glass plate. Another flat glass was placed on top of the mold, and the plate was tightly clamped together. After the mold had been filled with the light cure composite material, the top surface was cured for 30 seconds with a light source. Chemical cure resin specimens were made in the same manner as above. Three hundreds and twenty composite resin specimens were constructed from the four composite materials. One hundred and sixty specimens of them were placed in a heater at $50^{\circ}C$, $75^{\circ}C$, $100^{\circ}C$, $125^{\circ}C$, $150^{\circ}C$, $175^{\circ}C$ and $200^{\circ}C$ for 5 minutes or 10 minutes respectively before compressive strengths were measured. Another one hundred and sixty specimens were tested for the diametral tensile strengths in the same way as above. They were randomly divided into eight groups according to the mode of heating methods as follows and stored in distilled water at $37^{\circ}C$ for 24 hours. Group $37^{\circ}C$ - specimens were stored at $37^{\circ}C$ in distilled water for 24 hours. Group $50^{\circ}C$ - specimens were heated at $50^{\circ}C$ after curing. Group $75^{\circ}C$ - specimens were heated at $75^{\circ}C$ after curing. Group $100^{\circ}C$ - specimens were heated at $100^{\circ}C$ after curing. Group $125^{\circ}C$ - specimens were heated at $125^{\circ}C$ after curing. Group $150^{\circ}C$ - specimens were heated at $150^{\circ}C$ after curing. Group $175^{\circ}C$ - specimens were heated at $175^{\circ}C$ after curing. Group $200^{\circ}C$ - specimens were heated at $200^{\circ}C$ after curing. Twenty specimens of each of four composite resins were respectively made by insertion of materials into same mold for examining the dimensional changes between before and after heating. The final eighty specimens were stored in distilled water at $37^{\circ}C$ for 24 hours before testing the dimensional changes. Compressive and diametral tensile strengths were measured crosshead speed 1mm/minute and 500Kg in full scale with a mechanical testing machine (DLC 500 Type, Shimadzu Co., Japan). Dimensional changes were determined by measuring the diametral changes of eighty specimens with micrometer (Mitutoyo Co., Japan). Results were as follows: 1. Diametral tensile strengths of specimens in all groups were increased with time heated compared with control group except for that in group $50^{\circ}C$ and the maximum diametral tensile strength was appeared in the specimen of Litefil-P heated for 10 minutes at $100^{\circ}C$. In heliomolar and P-50, it could be seen in the specimen heated for 10 minutes at $150^{\circ}C$, but in Bisfil-II, it could be found in the specimen heated for 5 minutes at $150^{\circ}C$. 2. Compressive strengths of specimens in all groups was tended to be also increased with time heated but that in group $50^{\circ}C$ and the maximum compressive strengths were showed in the same specimens conditioned as the diametral tensile strengths of four composite materials tested. 3. In Heliomolar, Litefil-P, and Bisfil-II, it was decreased in diameters of resin specimens between before heating and increased in diameters of resin specimens after storing in distilled water, but it was not in P-50. 4. There is little difference in diametral tensile strengths, compressive strengths, and dimensional changes followed by heating the resin specimens for 5 minutes and 10 minutes, but there is no statistical significances.

  • PDF