• 제목/요약/키워드: Three dimensional body

검색결과 853건 처리시간 0.03초

KRISO 300K VLCC 이중모형선의 유동특성에 대한 풍동실험 연구 (Wind Tunnel Study on Flow Characteristics around KRISO 300K VLCC Double-body Model)

  • 김학록;이상준
    • 대한조선학회논문집
    • /
    • 제36권3호
    • /
    • pp.15-21
    • /
    • 1999
  • KRISO 300K VLCC 이중모형선 주위의 유동특성을 풍동실험을 통해 연구하였다. 선체 선미 주위유동과 후류유동의 평균속도 성분, 난류강도, 레이놀즈 전단응력 및 난류 운동에너지 분포를 열선풍속계를 이용하여 측정하였다. 실험은 선미와 후류의 횡단면에서 수행하였으며, 선체 표면에서의 유동 패턴을 정성적으로 조사하기 위하여 유막법을 이용한 유동가시화도 수행하였다. 선미와 근접 후류영역은 매우 복잡한 3차원의 유동특성을 가지고 있으며, 특히 종방향 와류영역에서 고리 모양의 후류 구조를 볼 수 있었다. 그리고 중앙평행부에서의 얇은 경계층은 선미 영역을 지나며 점차 두꺼워지고 복잡한 3차원 난류후류로 발전하였다.

  • PDF

준타원형 방정식에 의한 선미에서의 3차원 점성유동의 수치계산 (Numerical Calculations of Three-dimensional Viscous Flows over a stern by the Semi-Elliptic Equations)

  • 강신형;오건제
    • 대한조선학회지
    • /
    • 제26권1호
    • /
    • pp.11-23
    • /
    • 1989
  • 자유표면을 고려하지 않은 경우 선체주위의 3차원 점성유동을 수치해석하는 전산프로그램을 작성하였다. 복잡한 선체를 합리적으로 처리할 수 있는 body-fitted 좌표계를 사용하고, 난류모델은 $k-\varepsilon$모델을 채택하였다. Reynolds 방정식의 준 3차원 형태를 수치해석하도록 하였다. 작성된 전산프로그램의 합리성과 수치해석적 성능을 파악하기 위하여 단면이 3:1 타원단면의 모델과 SSPA-720 콘테이너 선형을 이용하여 수치해석의 결과와 실험데이터를 비교하였다. 평균속도분포와 압력의 분포는 위 모델의 풍동시험결과와 전반적으로 잘 일치하고 있으나, 난류운동에너지는 선미 부근에서 실제보다 많이 예측되고 있다.

  • PDF

Elastic Analysis of a Cracked Ellipsoidal Inhomogeneity in an Infinite Body

  • Cho, Young-Tae
    • Journal of Mechanical Science and Technology
    • /
    • 제15권6호
    • /
    • pp.709-719
    • /
    • 2001
  • In particle or short-fiber reinforced composites, cracking of reinforcements is a significant damage mode because the cracked reinforcements lose carrying capacity. This paper deals with elastic stress distributions and load carrying capacity of intact and cracked ellipsoidal inhomogeneities. Three dimensional finite element analysis has been carried out on intact and cracked ellipsoidal inhomogeneities in an infinite body under uniaxial tension and pure shear. For the intact inhomogeneity, as well known as Eshelbys solution, the stress distribution is uniform in the inhomogeneity and nonuniform in the surrounding matrix. On the other hand, for the cracked inhomogeneity, the stress in the region near the crack surface is considerably released and the stress distribution becomes more complex. The average stress in the inhomogeneity represents its load carrying capacity, and the difference between the average stresses of the intact and cracked inhomogeneities indicates the loss of load carrying capacity due to cracking damage. The load carrying capacity of the cracked inhomogeneity is expressed in to cracking damage. The load carrying capacity of the cracked inhomogeneity is expressed in terms of the average stress of the intact inhomogeneity and some coefficients. It is found that a cracked inhomogeneity with high aspect ratio still maintains higher load carrying capacity.

  • PDF

Three-Dimensional Effects on Added Masses of Ship-Like Forms for Higher Harmonic Modes

  • Y.K.,Chon
    • 대한조선학회지
    • /
    • 제25권2호
    • /
    • pp.19-30
    • /
    • 1988
  • Sectional added masses of an elastic beam vibrating vertically on the free surface in higher harmonic modes are evaluated. Hydrodynamic interactions between neighboring sections, which strip theory ignores, are considered for modal wave lengths of the order of magnitude of cross-sectional dimensions of the body. An approximate solution of modified Helmholtz equation which becomes a singular perturbation problem at small wave lengths is secured to get an analytic expression for added masses attending higher harmonic modes. As a bound of the present theory, the modified Helmholtz equation is solved for the long flat plate vibrating at high frequency on the water surface without any limitations on modal frequency. Finally, extensive series of numerical calculations are carried out for ship-like forms. It is found that when modal wave length is comparable to or shorter than a typical cross-sectional dimension of a body, sectional interaction effects are large which result in considerable reductions in added masses. For a fuller section, the ratio of added mass reduction is greater. In the limit of vanishing sectional area, the added masses approach to that of flat plate of equal beam. It is shown that the added mass distribution for a Legendre modal from can be determined form the present theory and that the results agree with the extensive three-dimensional determination of Vorus and Hilarides.

  • PDF

무인 헬기 자동 착륙을 위한 3차원 위치 추적 시스템 (Three-Dimensional Location Tracking System for Automatic Landing of an Unmanned Helicopter)

  • 추영열;강성호
    • 제어로봇시스템학회논문지
    • /
    • 제14권6호
    • /
    • pp.608-614
    • /
    • 2008
  • This paper describes a location tracking system to guide landing process of an Unmanned Helicopter(UMH) exploiting MIT Cricket nodes. For automatic landing of a UMH, a precise positioning system is indispensable. However, GPS(Global Positioning System) is inadequate for tracking the three dimensional position of a UMH because of large positioning errors. The Cricket systems use Time-Difference-of-Arrival(TDoA) method with ultrasonic and RF(Radio Frequency) signals to measure distances. They operate in passive mode in that a listener attached to a moving device receives distance signals from several beacons located at fixed points on ground. Inevitably, this passive type of implementation causes large disturbances in measuring distances between beacons and the listener due to wind blow from propeller and turbulence of UMH body. To cope with this problem, we proposed active type of implementation for positioning a UMH. In this implementation, a beacon is set up at UMH body and four listeners are located at ground area at least where the UMH will land. A pair of Ultrasonic and RF signals from the beacon arrives at several listeners to calculate the position of the UMH. The distance signals among listeners are synchronized with a counter value appended to each distance signals from the beacon.

Three dimensional seismic deformation-shear strain-swelling performance of America-California Oroville Earth-Fill Dam

  • Karalar, Memduh;Cavusli, Murat
    • Geomechanics and Engineering
    • /
    • 제24권5호
    • /
    • pp.443-456
    • /
    • 2021
  • Structural design of the vertical displacements and shear strains in the earth fill (EF) dams has great importance in the structural engineering problems. Moreover, far fault earthquakes have significant seismic effects on seismic damage performance of EF dams like the near fault earthquakes. For this reason, three dimensional (3D) earthquake damage performance of Oroville dam is assessed considering different far-fault ground motions in this study. Oroville Dam was built in United States of America-California and its height is 234.7 m (770 ft.). 3D model of Oroville dam is modelled using FLAC3D software based on finite difference approach. In order to represent interaction condition between discrete surfaces, special interface elements are used between dam body and foundation. Non-reflecting seismic boundary conditions (free field and quiet) are defined to the main surfaces of the dam for the nonlinear seismic analyses. 6 different far-fault ground motions are taken into account for the full reservoir condition of Oroville dam. According to nonlinear seismic analysis results, the effects of far-fault ground motions on the nonlinear seismic settlement and shear strain behaviour of Oroville EF dam are determined and evaluated in detail. It is clearly seen that far-fault earthquakes have very significant seismic effects on the settlement-shear strain behaviour of EF dams and these earthquakes create vital important seismic damages on the swelling behaviour of dam body surface. Moreover, it is proposed that far-fault ground motions should not be ignored while modelling EF dams.

Volumetric stability of autogenous bone graft with mandibular body bone: cone-beam computed tomography and three-dimensional reconstruction analysis

  • Lee, Hyeong-Geun;Kim, Yong-Deok
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제41권5호
    • /
    • pp.232-239
    • /
    • 2015
  • Objectives: The purpose of this study was to estimate the volumetric change of augmented autobone harvested from mandibular body cortical bone, using cone-beam computed tomography (CBCT) and three-dimensional reconstruction. In addition, the clinical success of dental implants placed 4 to 6 months after bone grafting was also evaluated. Materials and Methods: Ninety-five patients (48 men and 47 women) aged 19 to 72 years were included in this study. A total of 128 graft sites were evaluated. The graft sites were divided into three parts: anterior and both posterior regions of one jaw. All patients included in the study were scheduled for an onlay graft and implantation using a two-stage procedure. The dental implants were inserted 4 to 6 months after the bone graft. Volumetric stability was evaluated by serial CBCT images. Results: No major complications were observed for the donor sites. A total of 128 block bones were used to augment severely resorbed alveolar bone. Only 1 of the 128 bone grafts was resorbed by more than half, and that was due to infection. In total, the average amount of residual grafted bone after resorption at the recipient sites was $74.6%{\pm}8.4%$. Conclusion: Volumetric stability of mandibular body autogenous block grafts is predictable. The procedure is satisfactory for patients who want dental implants regardless of atrophic alveolar bone.

인장계류식 해양구조물의 구조응답에 미치는 굽힘강성의 영향 (Effects of the Flexibility on the Structural Responses of a Tension Leg Platform)

  • 이창호;이수룡
    • 한국해양공학회지
    • /
    • 제21권4호
    • /
    • pp.38-44
    • /
    • 2007
  • The structural response characteristics of Tension leg platforms(TLPs) in waves are examined for presenting the basic data for structural design of TLPs. The numerical approach is based on a combination of the three dimensional source distribution method and the structural response analysis method, in which the superstructure of TLP is assumed to be flexible instead of rigid. Hydrodynamic and hydrostatic forces on the submerged surface of a TLP have been accurately calculated by excluding the assumption of the slender body theory. The hydrodynamic interactions among TLP members, such as columns and pontoons, and the structural damping are included in structural analysis. The mooring forces are estimated as the sum of pretension of tendons and variational tension due to longitudinal displacements. Stiffness matrices of elastic beam elements connecting nodes are formulated by ordinary method of three dimensional frame analysis. The equation of motion about the whole structure is obtained by the sum of forces and moments acting on each nodes.

FDS 기법과 HCIB법을 이용한 3차원 내면파 수치 모사 (NUMERICAL SIMULATION OF THREE-DIMENSIONAL INTERNAL WAVES USING THE FDS SCHEME ON THE HCIB METHOD)

  • 신상묵
    • 한국전산유체공학회지
    • /
    • 제17권1호
    • /
    • pp.8-15
    • /
    • 2012
  • A code developed using the flux-difference splitting scheme on the hybrid Cartesian/immersed boundary method is applied to simulate three-dimensional internal waves. The material interface is regarded as a moving contact discontinuity and is captured on the basis of mass conservation without any additional treatment across the interface. Inviscid fluxes are estimated using the flux-difference splitting scheme for incompressible fluids of different density. The hybrid Cartesian/immersed boundary method is used to enforce the boundary condition for a moving three-dimensional body. Immersed boundary nodes are identified within an instantaneous fluid domain on the basis of edges crossing a boundary. The dependent variables are reconstructed at the immersed boundary nodes along local normal lines to provide the boundary condition for a discretized flow problem. The internal waves are simulated, which are generated by an pitching ellipsoid near an material interface. The effects of density ratio and location of the ellipsoid on internal waves are compared.

영역분할에 의한 격자세분화기법을 사용한 철도차량 마루부재 압출공정의 3차원 유한요소해석 (Three-Dimensional Finite Element Analysis for Hollow Section Extrusion of the Underframe of a Railroad Vehicle Using Mismatching Refinement with Domain Decomposition)

  • 박근;이영규;양동열;이동헌
    • 소성∙가공
    • /
    • 제9권4호
    • /
    • pp.362-371
    • /
    • 2000
  • In order to reduce weight of a high-speed railroad vehicle, the main body has been manufactured by hollow section extrusion using aluminum alloys. A porthole die has utilized for the hollow section extrusion process, which causes complicated die geometry and flow characteristics. Design of porthole die is very difficult due to such a complexity. The three-dimensional finite element analysis for hollow section is also an arduous job from the viewpoint of appropriate mesh construction and tremendous computation time. In the present work, mismatching refinement, an efficient domain decomposition method with different mesh density for each subdomain, is implemented for the analysis of the hollow section extrusion process. In addition, a modified grid-based approach with the surface element layer is utilized lot three-dimensional mesh generation of a complicated shape with hexahedral elements. The effects of porthole design are discussed through the simulation for extrusion of an underframe part of a railroad vehicle. An experiment has also been carried out for the comparison. Comparing the velocity distribution at the outlet with the thickness variation of the extruded part, it is concluded that the analysis results can provide reliable measures whether the die design is acceptable to obtain uniform part thickness. The analysis results are then successfully reflected on the industrial porthole die design.

  • PDF