• 제목/요약/키워드: Three dimensional CFD

검색결과 512건 처리시간 0.029초

수평형 집진기의 3차원 유동해석에 관한 연구 (A Study on Three-Dimensional Flow Analysis of Horizontal type Dust Collector)

  • 원종운;김용일
    • 한국산학기술학회논문지
    • /
    • 제20권12호
    • /
    • pp.519-524
    • /
    • 2019
  • 본 연구에서는 대풍량 곡물건조기에 사용되는 수평형 집진기의 집진효율 향상과 최적화를 위한 연구의 선행과정으로 Computational Fluid Dynamics(CFD)를 이용하여 집진기 내부의 유동 특성 분석과 원뿔형 허브의 각 변화가 집진기의 집진성능에 미치는 영향을 해석하였다. 최근 집진기 입구에 원뿔형 허브와 고정 베인을 설치하여 선회유동(Swirl Flow)을 발생시켜 이물질을 공기와 분리시키는 수평형 사이클론 집진기(Horizontal type Cyclone Dust collector)가 개발되었다. 이 집진기는 크기가 비교적 작고 설치가 용이하고 비교적 배압이 낮아 추가 동력을 필요로 하지 않으며 베인의 선회력을 이용하기 때문에 대풍량 배습용 송풍기에도 적용할 수 있는 장점을 가지고 있다. 그러나 수평형 집진기 형상으로 인해 발생하는 집진기 내부의 배압 문제와 분진 퇴적 문제를 해결하기 위해서 3차원 유동해석을 이용하여 집진기 내부 형상 변화에 따른 유동 특성에 관한 연구를 진행하였다. 실제 곡물건조기에 적용 가능한 수평형 집진기 설계를 위한 기초 자료를 제공하였으며, 향후 연구 예정인 고정 베인 설계, 주분리관 및 중간분리관의 설계에 적용하고자 한다.

Wind tunnel tests and CFD simulations for snow redistribution on 3D stepped flat roofs

  • Yu, Zhixiang;Zhu, Fu;Cao, Ruizhou;Chen, Xiaoxiao;Zhao, Lei;Zhao, Shichun
    • Wind and Structures
    • /
    • 제28권1호
    • /
    • pp.31-47
    • /
    • 2019
  • The accurate prediction of snow distributions under the wind action on roofs plays an important role in designing structures in civil engineering in regions with heavy snowfall. Affected by some factors such as building shapes, sizes and layouts, the snow drifting on roofs shows more three-dimensional characteristics. Thus, the research on three-dimensional snow distribution is needed. Firstly, four groups of stepped flat roofs are designed, of which the width-height ratio is 3, 4, 5 and 6. Silica sand with average radius of 0.1 mm is used to model the snow particles and then the wind tunnel test of snow drifting on stepped flat roofs is carried out. 3D scanning is used to obtain the snow distribution after the test is finished and the mean mass transport rate is calculated. Next, the wind velocity and duration is determined for numerical simulations based on similarity criteria. The adaptive-mesh method based on radial basis function (RBF) interpolation is used to simulate the dynamic change of snow phase boundary on lower roofs and then a time-marching analysis of steady snow drifting is conducted. The overall trend of numerical results are generally consistent with the wind tunnel tests and field measurements, which validate the accuracy of the numerical simulation. The combination between the wind tunnel test and CFD simulation for three-dimensional typical roofs can provide certain reference to the prediction of the distribution of snow loads on typical roofs.

Study on Unsteady Pressure due to Fan Rotor-Stator Interaction

  • Goto, S.;Kodama, H.;Tsuchiya, N.;Nakamura, Y.;Nozaki, O.;Nishizawa, T.;Yamamoto, K.
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2004년도 제22회 춘계학술대회논문집
    • /
    • pp.472-478
    • /
    • 2004
  • This paper describes the characteristics of the unsteady pressure on the stator surface induced by rotor viscous wakes. The primary object of this study is to investigate the effects of axial spacing between the rotor and the stator and three-dimensional vane geometries such as stator sweep and stator lean on the unsteady pressure fluctuations on the stator vane. To predict these fluctuations, unsteady three-dimensional Navier-Stokes analyses are performed. Furthermore, a three-dimensional analytical method using unsteady lifting-surface theory is also used to elucidate the mechanism of interaction of passing rotor wakes with downstream stator. Five different fan configurations with three sets of stator geometries, which are three radial stator configurations with different axial spacing, the swept stator and the swept and leaned stator, are used for this study. It is found that, in axial spacing between rotor and stator, the effect of radial phase skew of incoming rotor wake is important for the reduction of the induced unsteady pressure in addition to the rotor wake decay. It is also shown that incorporation of stator sweep and lean is effective to reduce this unsteady pressure.

  • PDF

플러그 형상에 따른 글로브 밸브의 동특성 평가 (Evaluation of Dynamic Characteristic of a Globe Valve with Various Plug Types)

  • 고성호;박세일;양상민
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2004년도 추계 학술대회논문집
    • /
    • pp.29-32
    • /
    • 2004
  • A three dimensional numerical analysis and experimental measurements were made for incompressible flows in a globe valve with three different types of plug. Characteristics of pressure drop across the valve were investigated for each type of plug at various opening positions. Numerical simulation results show a good agreement with experimental data.

  • PDF

CFD Study on Particle Effect and Erosion in the Axial Compressor Blades and Shroud of Turbomachinery

  • Yoon J.S.;Chang Keun-Shik
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2003년도 The Fifth Asian Computational Fluid Dynamics Conference
    • /
    • pp.233-234
    • /
    • 2003
  • Fly ash enters axial compressor when a turbomachinery is operated in an adverse environment. We have numerically investigated erosion of the blade and shroud in the turbulent compressor passage flow under the influence of gas-particle two-phase interaction. There have appeared quasi-three dimensional calculations on this subject but not the complete three-dimensional gas-particle interaction as done in the present work. Lagrangian particle tracing technique is used on the base of parallel processing for efficient calculation. Accuracy of the present code is tested using the benchmark lPL nozzle. In the DFVLR compressor blades, we have shown that a large number of particles passing through the tip clearance make impact on the blade tip and on the shroud. Higher degree of erosion is resulted by the heavier particles due to the centrifugal force.

  • PDF

3차원 비틀어진 날개 주위의 비정상 공동 현상에 대한 수치해석 (Numerical Analysis of Unsteady Cavitating Flow on a Three-dimensional Twisted Hydrofoil)

  • 박선호;이신형
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2011년 춘계학술대회논문집
    • /
    • pp.31-40
    • /
    • 2011
  • Unsteady sheet cavitation on a three-dimensional twisted hydrofoil was studied using an unsteady Reynolds-averaged Navier-Stokes equations solver based on a cell-centered finite volume method. As a verification test of the computational method. non-cavitating and cavitating flow over a modified NACA66 foil section was simulated and validated against existing experimental data. The numerical uncertainties of forces and pressure were evaluated for three levels of mesh resolution. The computed pressure on the foil and the cavity shedding behavior were validated by comparing with existing experimental data. The cavity shedding dynamics by re-entrant jets from the end and sides of the cavity were investigated.

  • PDF

원자로 부수로내 혼합날개를 지나는 삼차원 열유동 해석 (Numerical Analyses of Three-Dimensional Thermo-fluid flow through Mixing Vane in A Subchannel of Nuclear Reactor)

  • 최상철;김광용
    • 대한기계학회논문집B
    • /
    • 제27권3호
    • /
    • pp.311-318
    • /
    • 2003
  • The present work evaluates the effects of mixing vane shape on the flow structure and heat transfer downstream of mixing vane in a subchannel of fuel assembly. by obtaining velocity and pressure fields. turbulent intensity. flow-mixing factors. heat transfer coefficient and friction factor using three-dimensional RANS analysis. Four different shapes of mixing vane. which were designed by the authors were tested to evaluate the performances in enhancing the heat transfer. Standard k-$\varepsilon$ model is used as a turbulence closure model. and. periodic and symmetry conditions are set as boundary conditions. The flow blockage ratio is kept constant. but the twist angle of mixing vane is changed. The results with three turbulence models were compared with experimental data.

3차원 비틀어진 날개 주위의 비정상 공동 유동에 대한 수치적 연구 (NUMERICAL INVESTIGATION OF UNSTEADY CAVITATING FLOW ON A THREE-DIMENSIONAL TWISTED HYDROFOIL)

  • 박선호;이신형
    • 한국전산유체공학회지
    • /
    • 제16권3호
    • /
    • pp.37-46
    • /
    • 2011
  • Unsteady sheet cavitation on a three-dimensional twisted hydrofoil was studied using an unsteady Reynolds-averaged Navier-Stokes equations solver based on a cell-centered finite volume method. As a verification test of the computational method, non-cavitating and cavitating flows over a modified NACA66 foil section were simulated and validated against existing experimental data. The numerical uncertainties of forces and pressure were evaluated for three levels of mesh resolution. The computed pressure on the foil and the cavity shedding behavior were validated by comparing with existing experimental data. The cavity shedding dynamics by re-entrant jets from the end and sides of the cavity were investigated.

초음파 유량계를 통하는 기체유동의 CFD 해석 (A CFD Analysis of Gas Flow through an Ultrasonic Meter)

  • 김재형;김희동;이호준;황상윤
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.998-1003
    • /
    • 2003
  • Ultrasonic flow metering(UFM) technology is being received much attention from a variety of industrial fields to exactly measure the flow rate. The UFM has much advantage over other conventional flow meter systems, since it has no moving parts, and offers good accuracy and reliability without giving any disturbances to measure the flow rate, thereby not causing pressure losses in the flow fields. In the present study, 3-dimensional, unsteady, compressible Navier-Stokes equations are solved by a finite volume scheme, based upon the second order upwind scheme for spatial derivatives and the multi-stage Runge-Kutta integral method for time derivatives. In order to simulate multi-path ultrasonic flow meter, an excited pressure signal is applied to three different locations upstream, and the pressure signals are received at three different locations downstream. The mean flow velocities are calculated by the time difference between upstream and downstream propagating pressure signals. The obtained results show that the present CFD method simulates successfully ultrasonic meter gas flow and the mean velocity measured along the chord near the wall is considerably influenced by the boundary layers.

  • PDF

CFD 모형을 이용한 도시 도로 협곡에서의 흐름 체계 분류 (Classification of Flow Regimes in Urban Street Canyons Using a CFD Model)

  • 김재진;백종진
    • 한국대기환경학회지
    • /
    • 제21권5호
    • /
    • pp.525-535
    • /
    • 2005
  • Using a three-dimensional computational fluid dynamics (CFD) model with the $k-{\varepsilon}$ turbulence closure scheme based on the renormalization group theory, flow regimes in urban street canyons are classified according to the building and street aspect ratios. The transition between skimming flow (SF) and wake interference flow (WIF) is determined with the size of double-eddy circulation generated behind the upwind building. The transition between WIF and isolated roughness flow (IRF) is determined with the flow reattachment distance from the upwind building. The critical aspect ratios at which the flow transition occurs are found and compared with those in previous studies. The results show that the flow-regime classification method used in this study is quite reasonable and that the values of the critical aspect ratios are generally consistent with those in fluid experiments or large-eddy simulation. The regression equation describing a relation between the building and street aspect ratios at the flow-regime transition is presented.