• Title/Summary/Keyword: Three axis attitude control

Search Result 50, Processing Time 0.025 seconds

Magnetic Field Analysis for Development of Magnetic Torquer

  • Yim, Jo-Ryeong;Lee, Seon-ho;Rhee, Seung-Wu
    • Bulletin of the Korean Space Science Society
    • /
    • 2003.10a
    • /
    • pp.63-63
    • /
    • 2003
  • There are many actuators and sensors used for attitude control system for KOMPSAT such as Reaction Wheel Assembly, Magnetic Torque Assembly, Dual Thruster Module, Solar array Drive, Three Axis Magnetometer, Conical Earth Sensor, Fine Sun Sensor Assembly, Coarse Sun Sensor Assembly, Gyro Reference Assembly and so on. For KOMPSA T satellite it has been considered using the Magnetic Torquer (MTQ) generating the magnetic dipole moment. In general, the magnetic dipole moment for satellite attitude control system is used for dumping out the excessive reaction wheel momentum so that the reaction wheel speed is not saturated. The objective of this study is to analyze the magnetic field characteristics generated by the Magnetic Torquer using the Maxwell 2D Field Simulator software. Currently, the developing model (DM) of the MTQ is being developed and manufactured at a company under the supervision of KARL MTQ is an electromagnet consisting of a ferromagnetic cylindrical core on which an excitation coil is wound. A current is passed through the coil to produce a dipole momentum in the ferromagnetic core. The configuration of the MTQ will be introduced in the presentation. The 2 dimensional model of the MTQ is drawn as axisymmetric models in RZ plane, and each corresponding material is assigned to the each MTQ object, the core, coil, and background. After the boundary conditions, current sources, and solution parameters are set up, the magnetic field intensities, directions, and other values specified by users can be calculated by using the finite element analysis. The theoretical magnetic field quantities obtained by the Maxwell 2D Simulator can be used for the basis of the development of the MTQ.

  • PDF

System Design of COMS(Communication, Ocean and Meteorological Satellite) Propulsion System (통신해양기상위성 추진시스템 시스템설계)

  • Park Eung-Sik;Han Cho-Young;Chae Jong-Won;Bucknell S.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.426-430
    • /
    • 2005
  • The COMS(Communication, Ocean and Meteorological Satellite) is the first developed three-axis stabilization multi-function satellite on geostationary earth orbit(GEO) in korea, presently scheduled to be launched in 2008. The COMS propulsion system provides the thrust and torque required for the insertion into GEO, attitude and orbit control/adjustment of spacecraft. In this paper, system design of propulsion system, basic functions and design requirement of components are described.

  • PDF

3-Axis Modeling and Small Angle Maneuver Including Vibration Suppression for a Satellite (인공위성의 3축 모델링과 진동억제를 포함한 소각선회)

  • Lee, D.W.;Cho, K.R.
    • Journal of Advanced Navigation Technology
    • /
    • v.4 no.2
    • /
    • pp.103-113
    • /
    • 2000
  • There are several methods in the mathematical modeling of a satellite with flexible appendages. In this paper, the hybrid Lagrange's equations of motion using assumed modes method are derived. The assumed modes method is one of approximate methods which have shorter calculation time due to low-dimension compare with FEM. These consist of three-equations about angular velocities and two-equations about flexible deformations, and physically represent interaction between hub and solar panel. In an attitude control, a control law is designed to minimize a given performance index considering not only control input but also vibration suppression. For these purpose, this paper applies LQG and LQG/LTR schemes to this model and finally show the capability for attitude control including vibration suppression. Especially, this paper shows the method of assumption as nonsingular system through singular value division for LQG/LTR design.

  • PDF

Performance Improvement of an AHRS for Motion Capture (모션 캡쳐를 위한 AHRS의 성능 향상)

  • Kim, Min-Kyoung;Kim, Tae Yeon;Lyou, Joon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.12
    • /
    • pp.1167-1172
    • /
    • 2015
  • This paper describes the implementation of wearable AHRS for an electromagnetic motion capture system that can trace and analyze human motion on the principal nine axes of inertial sensors. The module provides a three-dimensional (3D) attitude and heading angles combining MEMS gyroscopes, accelerometers, and magnetometers based on the extended Kalman filter, and transmits the motion data to the 3D simulation via Wi-Fi to realize the unrestrained movement in open spaces. In particular, the accelerometer in AHRS is supposed to measure only the acceleration of gravity, but when a sensor moves with an external linear acceleration, the estimated linear acceleration could compensate the accelerometer data in order to improve the precision of measuring gravity direction. In addition, when an AHRS is attached in an arbitrary position of the human body, the compensation of the axis of rotation could improve the accuracy of the motion capture system.

다목적실용위성 2호 추진시스템 비행모델 개발

  • Lee, Kyun-Ho;Han, Cho-Young;Yu, Myoung-Jong;Choi, Joon-Min
    • Aerospace Engineering and Technology
    • /
    • v.3 no.1
    • /
    • pp.97-102
    • /
    • 2004
  • Propulsion System provides the required velocity change impulse for orbit transfer from parking orbit to mission orbit and three-axis vehicle attitude control impulse. KOMPSAT-2 propulsion system(PS) is an all-welded, monopropellant hydrazine system. The PS consists of the subassemblies and components such as Thrusters, Propellant Tank, Pressure Transducer, Propellant Filter, Latching Isolation Valves, Fill/Drain Valves, interconnecting propellant line assembly, and thermal hardwares for operation-environment control of the PS. This paper summarizes a development process of the liquid propulsion system from the design engineering up to the test and evaluation.

  • PDF

Assessment of Relative Accuracy for Inaccessible Area Imagery Using Biased Ground Control Points (편향된 지상기준점을 이용한 비접근지역 영상좌표의 상대정확도 향상연구)

  • 권현우;조성준;임삼성
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.20 no.2
    • /
    • pp.165-170
    • /
    • 2002
  • For the inaccessible area where the field verification is unable, it is difficult to obtain the ground control points (GCPs) or the acquired GCPs may be inaccurate. In general systematic geometric correction is achieved by utilizing orbit ephemeris and three axis attitude data of the satellite. however, this method results to poor accuracy of the imagery's absolute coordinates. To improve the absolute accuracy as well as the relative accuracy, we added the accessible region into the inaccessible area. We obtained GCPs in the accessible region by the fast static GPS survey and made geometric corrections with these biased GCPs. Because the biased GCPs show a pattern of coordinate errors, we analyzed this tendency to track the estimated errors in the inaccessible area.

Observation of the Earth's Magnetic field from KOMPSAT-1

  • Hwang, Jong-Sun;Kim, Sung-Yong;Lee, Seon-Ho;Min, Kyung-Duck;Kim, Jeong-Woo;Lee, Su-Jin
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1236-1238
    • /
    • 2003
  • The Earth's total magnetic field was extracted from on board TAM (Three Axis Magnetometer) observations of KOMPSAT-1 satellite between June 19th and 21st, 2000. In the pre-processing, the TAM's telemetry data were transformed from ECI (Earth Centered Inertial frame) to ECEF (Earth Centered Earth Fixed frame) and then to spherical coordination, and self-induced magnetic field by satellite bus itself were removed by using an on-orbit magnetometer data correction method. The 2-D wavenumber correlation filtering and quadrant-swapping method were applied to the pre-processed data in order to eliminate dynamic components and track-line noise, respectively. Then, the spherical harmonic coefficients are calculated from KOMPSAT-1 data. To test the validity of the TAM's geomagnetic field, Danish/NASA/French ${\phi}$rsted satellite's magnetic model and IGRF2000 model were used for statistical comparison. The correlation coefficient between ${\phi}$rsted and TAM is 0.97 and IGRF and TAM is 0.96. It was found that the data from on board magnetometer observations for attitude control of Earth-observing satellites can be used to determinate the Earth's total magnetic field and that they can be efficiently used to upgrade the global geomagnetic field coefficients, such as IGRF by providing new information at various altitudes with better temporal and spatial coverage.

  • PDF

Development of a Self Balancing Electric Wheelbarrow (자기 균형 기능이 있는 외발 전동 손수레 개발)

  • Lee, Myung-Sub;Sung, Young-Whee
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.21 no.1
    • /
    • pp.21-28
    • /
    • 2020
  • In this paper, a new type of electric wheelbarrow is proposed and developed. The developed electric wheelbarrow is equipped with an attitude reference system(ARS) sensor, which consists of 3-axis acceleration sensor and 2-axis Gyro sensor so that it can estimate pitch angle and roll angle. When an operator tilts the wheelbarrow up and down, the pitch angle is detected. The sign of the pitch angle is interpreted as the operator's intention for moving the wheelbarrow forward or backward and the controller drives the wheel of the wheelbarrow with the velocity according to the magnitude of the detected pitch angle. A cargo box of the wheelbarrow is designed to rotate and is controlled to maintain level always, so an operator can handle the electric wheelbarrow easily and safely. The wheelbarrow consists of an in-wheel motor, a DC motor, motor drives, an ARS sensor considering economical use in industrial field. Three experiments are performed to verify the feasibility and stability of the electric wheelbarrow.

Study on a Spin Stabilization Technique Using a Spin Table (스핀테이블을 이용한 스핀안정화 기법 연구)

  • Kim, Dae-Yeon;Suh, Jong-Eun;Han, Jae-Hung;Seo, Sang-Hyeon;Kim, Kwang-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.5
    • /
    • pp.419-426
    • /
    • 2018
  • For an orbit transfer in a space exploration mission, a solid or liquid rocket booster is included at the last stage of the launch vehicle. During the orbit transfer, thrust misalignment can cause a severe orbit error. Three axis attitude control or spin stabilization can be implemented to minimize the error. Spin stabilization technique has advantages in structural simplicity and lightness. One of ways to apply the spin stabilization to the payload is to include a spin table system in the launch vehicle. In this paper, effect of the spin table system on separation dynamics of the payload is analyzed. Simple model of the spin table to mimic basic functions is designed and simulation environment is established with the model. Effect of the spin table is tested by evaluating separation dynamics of a payload with and without the spin table. Analysis on tolerance effect of separation spring constant on separation dynamics of a payload is conducted.

The Social Psychological Meaning of Occupation-related Identities among Generations (세대에 따른 직업 관련 사회정체성의 사회심리학적 의미)

  • Choi, Yu-Jung;Choi, Set-Byol;Lee, Myoung-Jin
    • Korea journal of population studies
    • /
    • v.34 no.3
    • /
    • pp.55-84
    • /
    • 2011
  • This study initiated with the intention to reveal the social consultations and fissures through a comparative analysis on generational characteristics by indicating occupation-related identities with the concept of social identity supported by theoretical resources. According to the three dimensions of social identity which are evaluation, potency and activity, there was more generational agreement rather than difference toward occupation-related identities. Among the 44 identities, only evaluation dimensions on minister, congressman, plane captain, farmer and potency dimensions on CEO of a major companies, professor, medical doctor, nurse, celebrity, shaman, unemployed person were statistically significant. For 'Leader and Professional', the respondents in their 50's gave high scores in both evaluation and potency dimensions. On the other side, the 30's had negative viewpoints while the 20's and 40's had neutral perspectives. For the potency dimension, the age groups were divided into the 20's, 30's and 40's, 50's; having the younger generations underestimate the potency dimension of such categories. Also for the 'General Occupation', 20's and the 30's relatively devaluated with more distinctive degree toward evaluation dimensions. For religion, 20's and 30's were positive toward buddhist monks while the 40's and 50's were more favorable with priests. For the non-economically active population, the lifetime cycle influenced each generations. When performing a two dimensional analysis toward the 'Leader and Professional' with evaluation and potency on each axis, the 50's highly evaluated both evaluation and potency dimension of such identities. However, for the 40's, 30's and 20's, the average value fell while the focus of the distribution deepened. The 30's had negative perspective toward the evaluation dimension while the 20's reflected critical attitude toward the potency dimension.