• Title/Summary/Keyword: Three Way Catalysts

Search Result 33, Processing Time 0.024 seconds

Utilization of Spent Catalysts for the Removal of VOCs (휘발성 유기화합물 제거를 위한 폐 촉매의 이용)

  • Kim, Sang Chai;Shim, Wang Geun
    • Applied Chemistry for Engineering
    • /
    • v.18 no.4
    • /
    • pp.303-313
    • /
    • 2007
  • Various commercial catalysts used in chemical related applications have been disposed as an industrial waste when the catalytic activity of catalysts is not good enough to achieve an optimum yield. In addition, the amount of disposed three way catalysts (TWC) has been continuously increased. Considering the physicochemical, environmental, and economical characteristics, the deactivated spent catalysts can be treated in several alternative ways such as regeneration, recycling, and disposal. In view of the environmental and economical matters, the spent catalyst should be regenerated and used for the various purposes, although its activity is not as good as a fresh catalyst. On the other hand, spent catalysts containing noble and metal oxides can be applicable for the catalytic oxidation of volatile organic compounds (VOCs) by applying the proper treatment method. Therefore in this review the quantity of the spent catalysts and the available regeneration methods for the spent catalysts are briefly summarized and especially the proper regeneration method for applying the catalytic oxidation of VOCs and its results are introduced.

Catalytic Oxidation of Volatile Organic Compounds Over Spent Three-Way Catalysts (배기가스 정화용 폐 자동차 촉매를 이용한 휘발성 유기화합물의 제거)

  • Shim, Wang Geun;Kim, Sang Chai
    • Applied Chemistry for Engineering
    • /
    • v.19 no.5
    • /
    • pp.574-581
    • /
    • 2008
  • The optimum regeneration conditions for the regeneration of three way spent catalysts (TWCs), which were taken from automobiles with different driving conditions, were investigated to evaluate the suitability as alternative catalysts for removing VOCs. The spent catalysts were washed with five different acids ($HNO_3$, $H_2SO_4$, $C_2H_2O_4$, $C_6H_8O_7$, and $H_3PO_4$) to remove contaminants and examine the optimum conditions for recovering the catalytic activity. The physicochemical properties of spent and its regenerated TWCs were evaluated by using nitrogen adsorption-desorption isotherms, XRD, and ICP. The relative atomic ratios of contaminants and platinum group metals (PGMs) of the spent TWCs were greatly dependent on the placed positions. The main contaminants formed were lubricant oil additives and metallic components. Also, the regeneration treatment increased the PGMs ratio, BET surface area, and average pore diameter of TWCs. The catalytic activity results indicated that the spent TWCs have the possibility for removing VOCs. Moreover, the employed acid treatments greatly enhanced the catalytic activity of the spent TWCs. Especially, nitric and oxalic acids provided the most improvement in the catalytic behavior. The catalytic activities of the regenerated TWCs were significantly influenced by the containing platinum ratios rather than the removal ratios of contaminants and the changes in the structural properties offered by the acid treatments.

Effect of Bimetallic Pt-Rh and Trimetallic Pt-Pd-Rh Catalysts for Low Temperature Catalytic Combustion of Methane

  • Bhagiyalakshmi, Margandan;Anuradha, Ramani;Park, Sang-Do;Park, Tae-Sung;Cha, Wang-Seog;Jang, Hyun-Tae
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.1
    • /
    • pp.120-124
    • /
    • 2010
  • Monometallic, bimetallic and trimetallic particles consisting of different weight compositions of Pt-Pd-Rh over pure alumina wash coats have been synthesized and their catalytic performance on methane conversion was studied from 150 to $600^{\circ}C$. Different catalyst formulations with variable Pt, Pd and Rh contents for bimetallic and trimetallic systems were tried and $Pt_{(1.5)}Rh_{(0.3)}/Al_2O_3$ and $Pt_{(1.0)}Pd_{(1.0)}Rh_{(0.3)}/Al_2O_3$ shows low $T_{50}$ and $T_{90}$ temperatures. Bimetallic and trimetallic particle synergism acts as three way catalysts and therefore, all the catalysts show 100% methane conversion. The effect of supports such as $ZrO_2$ and $TiO_2$ on methane combustion was investigated; from $T_{50}$ and $T_{90}$ results both $Al_2O_3$ and $ZrO_2$ are suitable supports for low temperature methane combustion.

Development of a One-dimensional Numerical Model of the Electrically Heated Three-Way Catalyst For Start-up Heating in a 48-V Gasoline Hybrid Vehicle (48-볼트 가솔린 하이브리드 차량 초기 시동 시 배기 정화 성능 분석을 위한 1차원 전기 히터 촉매 해석 모델 개발)

  • Seongsu Kim ;Junghwan Kim
    • Journal of ILASS-Korea
    • /
    • v.28 no.3
    • /
    • pp.150-155
    • /
    • 2023
  • Cold-start emissions are given great importance under the Euro-7 emission standard due to their significant impact on overall vehicle emissions. When an engine is started from a cold state, the combustion process is not yet optimized, leading to higher emissions. Hybrid vehicles, in particular, may face additional challenges, as their engine may remain inactive for extended periods, causing their catalysts to cool down and potentially become less effective in reducing emissions. In the present study, the performance of an electric heater was investigated as a means to enhance the catalyst heating during the start-up time. A simulation tool was utilized to develop a model for the gasoline exhaust aftertreatment system. The result indicates that the heater was able to increase the three-way catalyst temperature to 500℃ in 4 s using 20 kW power. In addition, the implementation of a secondary air supply resulted in reduced temperature overshoot and improved conversion efficiencies.

Structure and Reactivity of Bimetallic Catalyst (이원금속 촉매의 구조와 반응성)

  • Yie, Jae-Eue
    • Applied Chemistry for Engineering
    • /
    • v.3 no.1
    • /
    • pp.24-34
    • /
    • 1992
  • Recent studies dealing with the fundamental understanding and applications of bimetallic catalysts are discussed. Bimetallic catalysts have had a major industrial impact, specifically for the reforming of petroleum naphtha, for the hydrogen reduction of carbon monoxide, and for the three way catalytic converter system. The action of the bimetallic catalysts in these reactions may be interpreted in terms of ensembles, electronic influences and surface structure. Various combinations of metal pairs have been considered in order to evaluate the role played by the added metals. For catalyst selectivity control, the possibility of surface enrichment of one element has been recognised. More generally, the influence of preparative variables on the formation of supported catalysts has been clarified, In particular by temperature programmed reduction (TPR). Information on the structure of bimetallic catalysts has been obtained with chemical probes, such as chemisorption and reaction rate measurement and physical probes, such as extended X-ray absorption fine structure (EXAFS), scanning transmission electron microscopy (STEM) and Xe-NMR.

  • PDF

EVALUATION OF NOx REDUCTION CATALYST BY MODEL GAS FOR LEAN-BURN NATURAL GAS ENGINE

  • LEE C. H.;CHO B. C.
    • International Journal of Automotive Technology
    • /
    • v.6 no.6
    • /
    • pp.591-598
    • /
    • 2005
  • A three-way catalyst system of a natural gas vehicle (NGV) has characteristics of higher fuel consumption and higher thermal load than a lean-bum catalyst system. To meet stringent emission standards in the future, NGV with the lean-bum engine may need a catalyst system to reduce the amounts of HC, CO and NOx emission, although natural gas system has low emission characteristics. We conducted experiments to evaluate the conversion efficiency of the NOx reduction catalyst for the lean-burn natural gas engine. The NOx reduction catalysts were prepared with the ${\gamma}-Al_{2}O_3$ washcoat including Ba based on Pt, Pd and Rh precious metal. In the experiments, effective parameters were space velocity, spike duration of the rich condition, and the temperature of flowing model gas. From the results of the experiments, we found that the temperature for maximum NOx reduction was around $450^{\circ}C$, and the space velocity for optimum NOx reduction was around $30,000\;h^{-1}$ And we developed an evaluation model of the NOx reduction catalyst to evaluate the conversion performance of each other catalysts.

CO and C3H8 Oxidations over Supported Co3O4, Pt and Co3O4-Pt Catalysts: Effect on Their Preparation Methods and Supports, and Catalyst Deactivation (Co3O4, Pt 및 Co3O4-Pt 담지 촉매상에서 CO/C3H8 산화반응: 담체 및 제조법에 따른 영향과 촉매 비활성화)

  • Kim, Moon-Hyeon;Kim, Dong-Woo;Ham, Sung-Won
    • Journal of Environmental Science International
    • /
    • v.20 no.2
    • /
    • pp.251-260
    • /
    • 2011
  • $TiO_2$- and $SiO_2$-supported $Co_3O_4$, Pt and $Co_3O_4$-Pt catalysts have been studied for CO and $C_3H_8$ oxidations at temperatures less than $250^{\circ}C$ which is a lower limit of light-off temperatures to oxidize them during emission test cycles of gasoline-fueled automotives with TWCs (three-way catalytic converters) consisting mainly of Pt, Pd and Rh. All the catalysts after appropriate activation such as calcination at $350^{\circ}C$ and reduction at $400^{\circ}C$ exhibited significant dependence on both their preparation techniques and supports upon CO oxidation at chosen temperatures. A Pt/$TiO_2$ catalyst prepared by using an ion-exchange method (IE) has much better activity for such CO oxidation because of smaller Pt nanoparticles, compared to a supported Pt obtained via an incipient wetness (IW). Supported $Co_3O_4$-only catalysts are very active for CO oxidation even at $100^{\circ}C$, but the use of $TiO_2$ as a support and the IW technique give the best performances. These effects on supports and preparation methods were indicated for $Co_3O_4$-Pt catalysts. Based on activity profiles of CO oxidation at $100^{\circ}C$ over a physical mixture of supported Pt and $Co_3O_4$ after activation under different conditions, and typical light-off temperatures of CO and unburned hydrocarbons in common TWCs as tested for $C_3H_8$ oxidation at $250^{\circ}C$ with a Pt-exchanged $SiO_2$ catalyst, this study may offer an useful approach to substitute $Co_3O_4$ for a part of platinum group metals, particularly Pt, thereby lowering the usage of the precious metals.

Study on Shortening Light-Off Time of Three Way Catalyst and Reduction of Harmful Emissions with Exhaust Synthetic Gas Injection(ESGI) Technology during Cold Start of SI Engines (가솔린 기관의 냉간시동 조건에서 합성가스 배기분사 기술에 의한 촉매의 활성화 온도 도달시간 단축 및 유해배출물 저감에 관한 연구)

  • Cho, Yong-Seok;Lee, Seang-Wock;Won, Sang-Yeon;Song, Chun-Sub;Park, Young-Joon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.3
    • /
    • pp.94-101
    • /
    • 2008
  • Since regulations of exhaust emissions are continuously reinforced, studies to reduce harmful emissions during the cold start period of SI engines have been carried out very extensively worldwide. During the cold start period, raising the temperature of cold exhaust gas is a key strategy to minimize the light-off time of three way catalysts. In this study, a synthetic gas containing a large amount of hydrogen was injected into the exhaust manifold to raise the exhaust gas temperature and to reduce harmful emissions. The authors tried to evaluate changes in exhaust gas temperature and harmful emissions through controlling the engine operating parameters such as ignition timings and lambda values. Also the authors investigated both combustion stability and reduction of harmful emissions. Experimental results showed that combustion of the synthetic gas in the exhaust manifold is a very effective way for solving the problems of harmful emissions and light-off time. The results also showed that the strategy of retarded ignition timings and increased air/fuel ratios with ESGI is effective in raising exhaust gas temperature and reducing harmful emissions. Futhermore, the results showed that engine operating parameters ought to be controlled to lambda = 1.2 and ignition timing = $0{\sim}3^{\circ}$ conditions to reduce harmful emissions effectively under stable combustion conditions.

A Study on Emissions and Catalytic Conversion Efficiency Characteristics of an Electronic Control Engine Using Ethanol Blended Gasoline as Fuels

  • Cho Haeng-Muk
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.7
    • /
    • pp.722-728
    • /
    • 2005
  • In this paper, the effects of ethanol blended gasoline on emissions and their catalytic conversion efficiency characteristics were investigated in a multiple-point EFI gasoline engine, The results show that with the increase of ethanol concentration in the blended fuels, THC emissions were drastically reduced by up to thirty percent, And brake specific fuel consumption was increased, but brake specific energy consumption could be improved. However, unburned ethanol and acetaldehyde emissions increased. Pt/Rh based three-way catalysts were effective to reduce acetaldehyde emissions, but had low catalytic conversion efficiency for unburned ethanol. The effect of ethanol on CO and NOx emissions and their catalytic conversion efficiency had close relation to the engine's speed, load and air/fuel ratio. Furthermore fuels blended with thirty percent ethanol by volume could dramatically reduced THC CO and NOx emissions at idle speed.

Emission Characteristics of a Gasoline Engine Using Ethanol Blended Fuel (가솔린 기관의 에탄올혼합연료의 배출가스 특성에 관한 연구)

  • 조행묵;정동화
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.3
    • /
    • pp.516-521
    • /
    • 2004
  • In this paper, the effects of ethanol blended gasoline on emissions and their catalytic conversion efficiencies characteristics were investigated in gasoline engine with an electronic fuel injection. The results showed that the increase of ethanol concentration in the blended fuels brought the reduction of THC and $CO_2$ emissions from the gasoline engine. THC emissions were drastically reduced up to thirty percent. And brake specific fuel consumption was increased. but brake specific energy consumption was similar level. However. unburned ethanol and acetaldehyde emissions increased. The conversion efficiency of Pt/Rh based three-way catalysts and the effect of ethanol on CO and NOx emissions were investigated by the change of engine speed. load and air/fuel ratio. Furthermore, the ethanol blended fuel results in the reduction effect of THC. CO and NOx emissions at idle speed.