• Title/Summary/Keyword: Three Point Bent Beam

Search Result 2, Processing Time 0.015 seconds

Experimental Study on Fracture Behavior of Low-Heat Concrete, by Three-Point Bent Test (3점 휨시험에의한 저발열콘크리트의 파괴거동에 곤한 실험적 연구)

  • 조병완;박승국
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04a
    • /
    • pp.199-204
    • /
    • 1998
  • To analysis the failure character of Low-Heat concrete which is used to prevent the thermal crack caused by hydration heat, static loading test was performed by this test method, "Determination of the Fracture Energy of Motar and Concrete by Means of Three-Point Band Tests on Notched Beam" (suggested by RILEM 50-FMC Committe). This study compared and analysised the fracture energy of Mode I (opening mode), the most general pattern in the view of water-cemente ratio(W/C), compressive strength and age of Ordinary Portland Concrete and Low-Heat Concrete under the same mixture. The test results show that the case of Ordinary Portland Concrete and Low-Heat Concrete, low Water-Cemente ratio(W/C) cause the increase of fracture energy, and high failure-strength decrease failure-deflection, and the fracture energy of Low-Heat Concrete is similar to Ordinary Portland Concrete as the age increase. increase.

  • PDF

Strength Estimation of Die Cast Beams Considering Equivalent Porous Defects (다이캐스팅 보의 등가 기공결함을 고려한 강도평가)

  • Park, Moon Shik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.5
    • /
    • pp.337-343
    • /
    • 2017
  • As a shop practice, a strength estimation method for die cast parts is suggested, in which various defects such as pores can be allowed. The equivalent porosity is evaluated by combining the stiffness data from a simple elastic test at the part level during the shop practice and the theoretical stiffness data, which are defect free. A porosity equation is derived from Eshelby's inclusion theory. Then, using the Mori-Tanaka method, the porosity value is used to draw a stress-strain curve for the porous material. In this paper, the Hollomon equation is used to capture the strain hardening effect. This stress-strain curve can be used to estimate the strength of a die cast part with porous defects. An elastoplastic theoretical solution is derived for the three-point bending of a die cast beam by using the plastic hinge method as a reference solution for a part with porous defects.