• 제목/요약/키워드: Three Model Systems

검색결과 2,654건 처리시간 0.034초

퍼지이론을 이용한 FEM 모델링을 위한 자동 요소분할 시스템 (Automatic Mesh Generation System for a Novel FEM Modeling Based on Fuzzy Theory)

  • 이준성;이양창;최윤종
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2005년도 춘계학술대회 학술발표 논문집 제15권 제1호
    • /
    • pp.139-142
    • /
    • 2005
  • This paper describes an automatic finite element (FE) mesh generation for three-dimensional structures consisting of free-form surfaces. This mesh generation process consists of three subprocesses: (a) definition of geometric model, i.e. analysis model, (b) generation of nodes, and (c) generation of elements. One of commercial sol id modelers is employed for three-dimensional sol id structures. Node is generated if its distance from existing node points is similar to the node spacing function at the point. The node spacing function is well control led by the fuzzy knowledge processing. The Delaunay method is introduced as a basic tool for element generation. Automatic generation of FE meshes for three-dimensional sol id structures holds great benefits for analyses. Practical performances of the present system are demonstrated through several mesh generations for three-dimensional complex geometry.

  • PDF

Failure mechanisms in coupled soil-foundation systems

  • Hadzalic, Emina;Ibrahimbegovic, Adnan;Dolarevic, Samir
    • Coupled systems mechanics
    • /
    • 제7권1호
    • /
    • pp.27-42
    • /
    • 2018
  • Behavior of soil is usually described with continuum type of failure models such as Mohr-Coulomb or Drucker-Prager model. The main advantage of these models is in a relatively simple and efficient way of predicting the main tendencies and overall behavior of soil in failure analysis of interest for engineering practice. However, the main shortcoming of these models is that they are not able to capture post-peak behavior of soil nor the corresponding failure modes under extreme loading. In this paper we will significantly improve on this state-of-the-art. In particular, we propose the use of a discrete beam lattice model to provide a sharp prediction of inelastic response and failure mechanisms in coupled soil-foundation systems. In the discrete beam lattice model used in this paper, soil is meshed with one-dimensional Timoshenko beam finite elements with embedded strong discontinuities in axial and transverse direction capable of representing crack propagation in mode I and mode II. Mode I relates to crack opening, and mode II relates to crack sliding. To take into account material heterogeneities, we determine fracture limits for each Timoshenko beam with Gaussian random distribution. We compare the results obtained using the discrete beam lattice model against those obtained using the modified three-surface elasto-plastic cap model.

Performance Comparison of Three Different Types of Attitude Control Systems of the Quad-Rotor UAV to Perform Flip Maneuver

  • Lee, Byung-Yoon;Yoo, Dong-Wan;Tahk, Min-Jea
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제14권1호
    • /
    • pp.58-66
    • /
    • 2013
  • This paper addresses the performance of three different types of attitude control systems for the Quad-rotor UAV to perform the flip maneuver. For this purpose, Quad-rotor UAV's 6-DOF dynamic model is derived, and it was used for designing an attitude controller of the Quad-rotor UAV. Attitude controllers are designed by three different methods. One is the open-loop control system design, another is the PD control system design, and the last method is the sliding mode control system design. Performances of all controllers are tested by 6-DOF simulation. In case of the open-loop control system, control inputs are calculated by the quad-rotor dynamic model and thrust system model that are identified by the thrust test. The 6-DOF realtime simulation environment was constructed in order to verify the performances of attitude controllers.

Kinematic Calibration of a Cartesian Parallel Manipulator

  • Kim, Han-Sung
    • International Journal of Control, Automation, and Systems
    • /
    • 제3권3호
    • /
    • pp.453-460
    • /
    • 2005
  • In this paper, a prototype Cartesian Parallel Manipulator (CPM) is demonstrated, in which a moving platform is connected to a fixed frame by three PRRR limbs. Due to the orthogonal arrangement of the three prismatic joints, it behaves like a conventional X-Y-Z Cartesian robot. However, because all the linear actuators are mounted at the fixed frame, the manipulator may be suitable for applications requiring high speed and accuracy. Using a geometric method and the practical assumption that three revolute joint axes in each limb are parallel to one another, a simple forward kinematics for an actual model is derived, which is expressed in terms of a set of linear equations. Based on the error model, two calibration methods using full position and length measurements are developed. It is shown that for a full position measurement, the solution for the calibration can be obtained analytically. However, since a ball-bar is less expensive and sufficiently accurate for calibration, the kinematic calibration experiment on the prototype machine is performed by using a ball-bar. The effectiveness of the kinematic calibration method with a ball-bar is verified through the well­known circular test.

Extraction of Geometric Primitives from Point Cloud Data

  • Kim, Sung-Il;Ahn, Sung-Joon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.2010-2014
    • /
    • 2005
  • Object detection and parameter estimation in point cloud data is a relevant subject to robotics, reverse engineering, computer vision, and sport mechanics. In this paper a software is presented for fully-automatic object detection and parameter estimation in unordered, incomplete and error-contaminated point cloud with a large number of data points. The software consists of three algorithmic modules each for object identification, point segmentation, and model fitting. The newly developed algorithms for orthogonal distance fitting (ODF) play a fundamental role in each of the three modules. The ODF algorithms estimate the model parameters by minimizing the square sum of the shortest distances between the model feature and the measurement points. Curvature analysis of the local quadric surfaces fitted to small patches of point cloud provides the necessary seed information for automatic model selection, point segmentation, and model fitting. The performance of the software on a variety of point cloud data will be demonstrated live.

  • PDF

정보기술(IT)을 응용한 수산정보시스템모형의 설계 및 구축에 관한 연구 (Designing and Building the Model of Fisheries Information Systems with Information Technology.)

  • 김하균
    • 수산경영론집
    • /
    • 제29권2호
    • /
    • pp.65-76
    • /
    • 1998
  • This paper tries to suggest the Model of Fisheries Information Systems(FIS) with information technology. The paper shows the analysis and design of FIS. FIS consists of three inportant parts. They are database system, modelbase system and networking. Database systems report to infer the statistic, institute, maket of fisheries. Modelbase systems are used to forecast and plan the automation of fisheries. Networking is needed to develop the Value-Added Networking(VAN). FIS will be highly possible to develop the biggest VAN in Korea.

  • PDF

ANALYSIS OF GAS-DYNAMIC EFFECTS IN COMPACT EXHAUST SYSTEMS OF SMALL TWO-STROKE ENGINES

  • Galindo, J.;Serrano, J.R.;Climent, H.;Tiseira, A.
    • International Journal of Automotive Technology
    • /
    • 제8권4호
    • /
    • pp.403-411
    • /
    • 2007
  • This article describes a methodology based on experiments and 1D modeling work related to the exhaust system analysis of a small two-stroke engine. The primary goal of this work was to understand how the design criteria of a compact exhaust system influenced the exhaust port pressure, since its evolution controls not only engine performance but also exhaust emissions. On the experimental side, a fully instrumented 50cc two-stroke engine was used to check the behavior of three different exhaust systems. A problem related to instantaneous pressure measurements in unsteady, hot flow was detected and solved during the study. To build the 1D model of the three exhaust systems, experimental information on the steady flow and the impulse test rigs was obtained under controlled conditions in specific facilities. Accurate comparisons between measured and calculated exhaust port instantaneous pressures were obtained from the following different exhaust system configurations: a straight duct, a tapered pipe and the three compact exhaust systems. The last step in the method used this model to analyze the pressure waves inside the exhaust system and detect the influence of the geometric parameters. The results should lead to improvements in the design process of complex compact exhaust systems in two-stroke engines.

Evolutionary computational approaches for data-driven modeling of multi-dimensional memory-dependent systems

  • Bolourchi, Ali;Masri, Sami F.
    • Smart Structures and Systems
    • /
    • 제15권3호
    • /
    • pp.897-911
    • /
    • 2015
  • This study presents a novel approach based on advancements in Evolutionary Computation for data-driven modeling of complex multi-dimensional memory-dependent systems. The investigated example is a benchmark coupled three-dimensional system that incorporates 6 Bouc-Wen elements, and is subjected to external excitations at three points. The proposed technique of this research adapts Genetic Programming for discovering the optimum structure of the differential equation of an auxiliary variable associated with every specific degree-of-freedom of this system that integrates the imposed effect of vibrations at all other degrees-of-freedom. After the termination of the first phase of the optimization process, a system of differential equations is formed that represent the multi-dimensional hysteretic system. Then, the parameters of this system of differential equations are optimized in the second phase using Genetic Algorithms to yield accurate response estimates globally, because the separately obtained differential equations are coupled essentially, and their true performance can be assessed only when the entire system of coupled differential equations is solved. The resultant model after the second phase of optimization is a low-order low-complexity surrogate computational model that represents the investigated three-dimensional memory-dependent system. Hence, this research presents a promising data-driven modeling technique for obtaining optimized representative models for multi-dimensional hysteretic systems that yield reasonably accurate results, and can be generalized to many problems, in various fields, ranging from engineering to economics as well as biology.

가정과 교육과정 모형에 대한 선호도 (Preferences for Home Economics Curriculum Models)

  • 채정현
    • 한국가정과교육학회지
    • /
    • 제8권1호
    • /
    • pp.33-49
    • /
    • 1996
  • The objectives of this study were (1) to determine the preferences for three home economics curriculum Models(Concept-based curriculum Model, Competency-based curriculum Model, and Practical Problem-based curriculum Model) of Korean home economics(HE) teachers and HE teacher educators, (2) to determine the difference between HE teachers and HE teacher educators according to purposes of HE, focus of learning, organization of HE subject matter, focus of HE curriculum, focus of HE content, HE knowledge, main questions addressed through HE curriculum, teaching strategies, students’progress, and systems of action, and (3) to determine the relationships between preferences for three curriculum Models and personal and professional characteristics of HE teachers. Respondents in this study were 225 HE teachers and 35 HE teacher educators. The survey method was used in this descriptive study. The survey method was used in this descriptive study. The overall curriculum Model preference of each teacher respondent was determined by counting number of times a given Model among 10 identified variables. The data were analyzed by using Chi-square to compare the differences between the two groups. To determine the relationships between preferences for three curriculum Models and personal and professional characteristics of HE teachers, coefficient of contingency tables was used. Both of HE teacher group(79.4%) and HE teacher educator group(67.6%) preferred the practical problem-based curriculum Model the most. There was a difference between the two groups on preferences for the curriculum Models related to systems of action. No significant difference emerged when Chi-square was applied to determine difference between the two groups on overall preferences for three HE curriculum Model. The chi square values between preferences for three curriculum Model and level of school, type of school were statistically significant. Each contingency coefficient for level of school(middle school and high school) and form of school(private and public school) was 27, which means there is a low association between the preferences and level of school and the preferences and form of school.

  • PDF

모델기반 통합 차상신호시스템 개발 (Model-based Development of Integrated Onboard Signaling System)

  • 한재문;김석헌;조용기
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 정기총회 및 추계학술대회 논문집
    • /
    • pp.245-250
    • /
    • 2011
  • ERTMS/ETCS Level 1 ATP, ATC and ATS are Signaling Systems adopted in korea. For operating in three different trackside signaling systems, train must have individual onboard signaling systems, ATP, ATC and ATS. Three signaling systems in one train is the main cause to increase installation and maintenance cost. Also it is need more effort to change a onboard signaling system depend on the trackside signaling system. those things should lead to decrease efficiency of the onboard signaling system. one integrated onboard signaling system for ATP, ATC and ATS is the good solution for those problems. IOSS is an integrated Onboard Signaling System and still developing. In this paper, we introduce the methodology of model-based development of IOSS. IOSS has one superviser process and several functional blocks to process individual signaling system s. Rhapsody which is CASE tool is used to construct the structure and develop the software for IOSS.

  • PDF