• 제목/요약/키워드: Three Dimensional Velocity

검색결과 1,155건 처리시간 0.026초

에어 스포일러 장착에 따른 자동차 후류 3차원 와 구조의 변화 (A Change of Three-Dimensional Vortical Structures by an Air Spoiler in the Wake of a Road Vehicle)

  • 김진석;성재용;김성초;김정수
    • 한국가시화정보학회지
    • /
    • 제4권1호
    • /
    • pp.56-61
    • /
    • 2006
  • A change of three-dimensional vortical structures on the wake behind a road vehicle has been investigated according to the existence of an air spoiler. To reconstruct the three-dimensional velocity fields, two-dimensional PIV(particle image velocimetry) measurements were performed for lots of the x-y, y-z and z-x planes. Since the isovorticity surface does not represent exactly the vortical structures within the recirculation region due to strong shear flows, the velocity component normal to the x-y plane is obtained by interpolating those velocities in the z-x plane. Then, the ${\lambda}_2-definition$ is applied to visualize the vortices in the recirculation region. As a result, it is found that the air spoiler weakens C-pillar vortices and produces strong wing-tip vortices. Inside the recirculation region, the height and volume of coherent vortices are increased relatively when an air spoiler is equipped. On the other hand, two small coherent vortices are observed in case that an air spoiler is absent.

  • PDF

전달행렬법을 이용한 3차원 파이프 계의 진동해석 (Vibration Analysis of Three-Dimensional Piping System by Transfer Matrix Method)

  • 이동명
    • 한국생산제조학회지
    • /
    • 제7권6호
    • /
    • pp.110-116
    • /
    • 1998
  • For the vibration analysis of 3-dimensional piping system containing fluid flow, a transfer matrix method is presented. The fluid velocity and pressure were considered, that coupled to longitudinal and flexural vibrations. Transfer matrices and point matrices were derived from direct solutions of the differential equations of motion of pipe conveying fluids, and the variations of natural frequency with flow velocity for 3-dimensional piping system were investigated.

  • PDF

포물선형상의 성형성에 관한 유한요소해석 (Finite Element Analysis on Formability of Parabolic Shape)

  • 정상원;이경원
    • 한국생산제조학회지
    • /
    • 제21권4호
    • /
    • pp.677-682
    • /
    • 2012
  • For the product with small diameter, long column, and parabolic shape, the forging formability of the high-carbon steel wire rod was investigated in this study. By using the three-dimensional finite element method, the formability of wire was reviewed by forming analysis for the desired parabolic shape of local part. Analysis results due to forging direction, forging velocity, friction coefficient and constraint location were also investigated. On the basis of these results, it is noted that the forging direction has the big influence when the product with long column is forged. As the forging velocity increases, buckling tends to be limited and formability of parabolic shape is improved. By constraining the lower parabolic shape part to suppress plastic strain, the effect depending on friction coefficient is not almost appeared. And good parabolic shape is obtained at the region of the forging velocity of more than 0.5 m/s.

Wind velocity simulation of spatial three-dimensional fields based on autoregressive model

  • Gao, Wei-Cheng;Yu, Yan-Lei
    • Wind and Structures
    • /
    • 제11권3호
    • /
    • pp.241-256
    • /
    • 2008
  • This paper adopts autoregressive (AR) model to simulate the wind velocity of spatial three-dimensional fields in accordance with the time and space dependent characteristics of the 3-D fields. Based on the built MATLAB programming, this paper discusses in detail the issues of the AR model deduced by matrix form in the simulation and proposes the corresponding solving methods: the over-relaxation iteration to solve the large sparse matrix equations produced by large number of degrees of freedom of structures; the improved Gauss formula to calculate the numerical integral equations which integral functions contain oscillating functions; the mixed congruence and central limit theorem of Lindberg-Levy to generate random numbers. This paper also develops a method of ascertaining the rank of the AR model. The numerical examples show that all those methods are stable and reliable, which can be used to simulate the wind velocity of all large span structures in civil engineering.

최대유량역에서 소형 축류 홴의 3차원 난류유동 특성에 관한 연구 (A Study on the Three-Dimensional Turbulent Flour Characteristics of a Small-sized Axial Fan at the Maximum Flowrate Region)

  • 김장권
    • 동력기계공학회지
    • /
    • 제4권3호
    • /
    • pp.25-33
    • /
    • 2000
  • This study represents three-dimensional turbulent flow characteristics around an axial fan measured at the operating point ${\varphi}=0.32$, which is equivalent to the maximum flowrate region, by using three-dimensional fiber-optic type LDA system. This LDA system is composed of a 5 W Argon-ion laser, two optics in back-scatter mode, three BSA's, a PC, and a three-dimensional automatic traversing system. A kind of paraffin fog is used for laser particles in this study. Mean velocity profiles around an axial fan along the downstream radial distance show that the streamwise and the tangential components exist as a predominant velocity and have the maximum value at the radial distance ratio 0.8, while the radial component has a small scale distribution and its flow direction is inward except a part of blade tip. The turbulent intensity profiles show that the radial component exists the most greatly. And also the turbulent kinetic energy shows about 60% as a maximum value at the radial distance ratio 0.9. Moreover, the Reynolds shear stresses do not exist at upstream flow, but the streamwise and the radial components of them show about 20% as a maximum value at the radial distance ratio 0.9 at downstream flow.

  • PDF

Three-Dimensional Flow Analysis and Improvement of Slip Factor Model for Forward-Curved Blades Centrifugal Fan

  • Guo, En-Min;Kim, Kwang-Yong
    • Journal of Mechanical Science and Technology
    • /
    • 제18권2호
    • /
    • pp.302-312
    • /
    • 2004
  • This work developed improved slip factor model and correction method to predict flow through impeller in forward-curved centrifugal fan. Both steady and unsteady three-dimensional CFD analyses were performed to validate the slip factor model and the correction method. The results show that the improved slip factor model presented in this paper could provide more accurate predictions for forward-curved centrifugal impeller than the other slip factor models since the present model takes into account the effect of blade curvature. The correction method is provided to predict mass-averaged absolute circumferential velocity at the exit of impeller by taking account of blockage effects induced by the large-scale backflow near the front plate and flow separation within blade passage. The comparison with CFD results also shows that the improved slip factor model coupled with the present correction method provides accurate predictions for mass-averaged absolute circumferential velocity at the exit of impeller near and above the flow rate of peak total pressure coefficient.

엇회전식 축류팬의 3 차원 비정상 유동에 관한 실험적 연구 (Experimental Study on the Three Dimensional Unsteady Flow in a Counter Rotating Axial Flow Fan)

  • 박현수;조이상;강현구;조진수
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.822-827
    • /
    • 2003
  • Experiments were done for the three dimensional unsteady flow in a counter rotating axial flow fan under stable operating condition. Flow fields in a counter rotating axial flow fan were measured at cross-sectional planes of the upstream and downstream of each rotor. Cross sectional flow patterns were investigated through the acquired data by the $45^{\circ}$ inclined hot-wire. Flow characteristics such as tip vortex, secondary flow and tip leakage flow were confirmed through axial, radial and tangential velocity vector plot. Swirl velocity, which was generated by the front rotor, was recovered in the form of static pressure rise by the rear rotor except for hub and tip regions.

  • PDF

부산 연안에서의 3차원 해륙풍 수치 모의 (A Three Dimensional Numerical Simulation of the Land and Sea breeze over Pusan Coastal Area, Korea.)

  • 문승의;김유근
    • 한국환경과학회지
    • /
    • 제2권2호
    • /
    • pp.103-113
    • /
    • 1993
  • The land and sea breeze over the Pusan coastal area is studied by three dimensional mesoscale numerical model. According to the results of the simulation experiments, both Pusan areas and Kimhae areas, the sea breeze began at 0800LST and the strongest at 1500LST and then at 1800LST. After midnight, the sea breeze changed about the land breeze and become weaker than that of the sea breeze in the daytime. Comparisons between calculations and observations showed that the characteristics of diurnal variation and v-component of the wind velocity relatively is similar to the Pusan areas. On the Kimhae areas, however, observations showed time lag which compared to the results of simulation experiments in the velocity of sea breeze and diurnal variation. From the above results, comparisons between calculations and observations is much more similar to the coastal areas than on the inland area.

  • PDF

대규모 와 모사에 의한 3차원 소형축류홴의 운전부하에 따른 난류유동 특성치 고찰 (An Investigation on Turbulent Flow Characteristics According to the Operating Loads of Three-Dimensional Small-Size Axial Fan by Large Eddy Simulation)

  • 김장권;오석형
    • 동력기계공학회지
    • /
    • 제20권1호
    • /
    • pp.50-56
    • /
    • 2016
  • This paper handled an investigation on the turbulent flow characteristics of three-dimensional small-size axial fan(SSAF) according to operating loads. Also, it was carried out by unsteady-state, incompressible and three-dimensional large eddy simulation(LES). The downstream flow type of SSAF is changed from axial flow to radial flow around the beginning of stall region at the aerodynamic performance curve. Axial mean velocity component largely grows around blade tip at the operating point of A to D, but transverse and vertical mean velocity components as well as Reynolds shear stresses highly develop around blade tip at the operating point of E to H. On the other hand, the peak value of turbulent kinetic energy developed around blade tip shows the highest at the operating point of E.

엇회전식 축류팬의 3차원 비정상 유동에 관한 실험적 연구 (Experimental Study on the Three Dimensional Unsteady Flow in a Counter-Rotating Axial Flow Fan)

  • 박현수;조이상;조진수
    • 대한기계학회논문집B
    • /
    • 제28권9호
    • /
    • pp.1005-1014
    • /
    • 2004
  • Experiments were done for the three dimensional unsteady flow in a counter-rotating axial flow fan under peak efficiency operating condition. Flow fields in a counter rotating axial flow fan were measured at cross-sectional planes of the upstream and downstream of each rotor. Cross sectional flow patterns were investigated through the acquired data by the 45$^{\circ}$ inclined hot-wire. Flow characteristics such as tip vortex, secondary flow and tip leakage flow were confirmed through axial, radial and tangential velocity vector plot. It has been found that the radial and tangential velocity components disappeared, while the axial velocity component highly increased as soon as the tip vortex was generated. It has been observed that secondary flow and turbulence intensity which were increased by the front rotor were dissipated passing through the rear rotor. As the result the energy loss of the counter rotating axial flow fan decreased at the downstream of rear rotor. Also, it has been verified that tip vortex pattern of the rear rotor was dampened because the tip vortex generated by front rotor was mixed with that of the rear rotor.