• Title/Summary/Keyword: Three - Finger

Search Result 331, Processing Time 0.032 seconds

Development of Force Measuring System using Three-axis Force Sensor for Measuring Two-finger Force (3축 힘센서를 이용한 두 손가락 힘측정장치 개발)

  • Kim, Hyeon-Min;Yoon, Jong-Won;Shin, Hee-Suk;Kim, Gab-Soon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.9
    • /
    • pp.876-882
    • /
    • 2010
  • Stroke patients can't use their hands because of the paralysis their fingers. Their fingers are recovered by rehabilitating training, and the rehabilitating extent can be judged by measuring the pressing force to be contacted with two fingers (thumb and first finger, thumb and middle finger, thumb and ring finger, thumb and little finger). But, at present, the grasping finger force of two-finger can't be accurately measured, because there is not a proper finger-force measuring system. Therefore, doctors can't correctly judge the rehabilitating extent. So, the finger-force measuring system which can measure the grasping force of two-finger must be developed. In this paper, the finger-force measuring system with a three-axis force sensor which can measure the pressing force was developed. The three-axis force sensor was designed and fabricated, and the force measuring device was designed and manufactured using DSP (Digital Signal Processing). Also, the grasping force test of men was performed using the developed finger-force measuring system, it was confirmed that the grasping forces of men were different according to grasping methods.

The Bending Performances of Sloped Finger-Jointed Rhus verniciflua (옻나무 경사핑거접합재의 휨강도성능)

  • 변희섭;이원희;홍병화
    • Journal of the Korea Furniture Society
    • /
    • v.10 no.1
    • /
    • pp.65-71
    • /
    • 1999
  • The bending performance of sloped finger-jointed Rhus verniciflua were tested in order to improve the strength properties of finger-joint. Sloped finger-cut pieces were jointed with three kinds of adhesives (polyvinyl acetate, polyvinyl-acryl acetate and oilic resin). The slope ratios of finger joints were 0, 1.0, 1.5, and 2.0. The MOE, MOR and deflection to maximum load in bending of sloped finger-joints and solid wood specimen were measured. The results were : 1) The efficiencies of MOE to finger and sloped finger-joints to the solid wood were almost same in the three kinds of adhesives(polyvinyl acetate, polyvinyl-acryl acetate and oilic urethane resin) and there were some effect of slope on the MOE in a sloped finger-joint for three kinds of resin adhesives. 2) There was the effect of slope on the MOR in sloped finger-joints in every kind of adhesive. The efficiencies of MOR in slope ratios of 0 and 2.0 ranged 65-79%, respectively. There was also a slight effect of the kinds of adhesives on the MOR. However, the efficiencies of deflection to the urethane resin adhesive were much less than those of polyvinyl acetate, polyvinyl-acryl acetate resin adhesives except the slope ratio of 0. 3) It might be impossible to estimate the bending stregth of sloped finger-jointed Rhus verniciflua by using MOE. The correlation coefficient(0.192) between MOE was very low and not significant at 5% level.

  • PDF

Development of a Hook-type Finger Force Measuring System with Force Sensors (힘센서를 이용한 후크형 손가락 힘 측정 장치 개발)

  • Kim, Gab-Soon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.6
    • /
    • pp.663-668
    • /
    • 2014
  • This paper presents a hook-type finger force measuring system with force sensors. The system is composed of a body, two three-axis force sensors, a hook, and so on. The two three-axis force sensors system was specially designed using FEM(Finite Element Method) and fabricated using strain-gages. The sensors measure the finger forces of both normal people and handicapped people in the system, and the forces are combined. The developed hook-type finger force measuring system can measure the pulling finger force of both normal and handicapped people. The pulling force tests of men and women were performed using the developed the system. It is thought that the developed system can be used to measure the pulling force of fingers.

Design of a Three-Axis Force Sensor for Finger Force Measuring System (손가락 힘측정장치의 3축 힘센서 설계)

  • Lee, Kyeong-Jun;Kim, Gab-Soon
    • Journal of Sensor Science and Technology
    • /
    • v.25 no.2
    • /
    • pp.110-115
    • /
    • 2016
  • This paper describes the design and fabrication of a three-axis force sensor with three parallel plate structures(PPSs) for measuring force in a finger force measuring system for a spherical object catch. The three-axis force sensor is composed of a Fx force sensor, Fy force sensor and a Fz force sensor, and the elements of Fx force sensor and Fy force sensor are a parallel plate structure(PPS) respectively and Fz force sensor is two PPS. The three-axis force sensor was designed using FEM(Finite Element Method), and manufactured using strain-gages. The characteristics test of the three-axis force sensor was carried out. As a test results, the interference error of the three-axis force sensor was less than 1.32%, the repeatability error of each sensor was less than 0.04%, and the non-linearity was less than 0.04%.

Effect of Finger Profile on Static Bending Strength Performance of Finger-Jointed Wood

  • Park, Han-Min;Lee, Gyun-Pil;Kong, Tae-Suk;Ryu, Hyun-Soo;Byeon, Hee-Seop
    • Journal of the Korean Wood Science and Technology
    • /
    • v.32 no.6
    • /
    • pp.57-66
    • /
    • 2004
  • To study the efficient usage of small diameter logs and woods containing defects such as knots, slope of the grain and decay, six types of finger-jointed woods with various finger profiles were made of poplar, pine and oak with different density. We investigated the effect of finger profile on static bending strength performances of finger-jointed woods. The efficiency of bending MOE, MOR and deflection showed the highest value in poplar finger-jointed wood with the lowest density of three species, and the lowest value in oak finger-jointed wood with the highest density of three species. The values markedly decreased with increasing finger pitch for finger-jointed wood glued with polyvinyl acetate (PVAc) resin for all tested species, whereas for the finger-jointed wood glued with resorcinol-phenol formaldehyde (RPF) resin, the influence of finger pitch on the efficiency of MOE was not found in all tested species, and those on the efficiency of MOR and deflection indicated the same trend as finger-jointed wood glued with PVAc resin in the case of pine and oak finger-jointed wood with higher densities. It was found that the values tended to decrease with increasing density of species on the whole and the desirable finger pitches were L (6.8 mm) for poplar, M (4.4 mm) for pine and S (3.5 mm) for oak in a view of economy. For finger-jointed wood glued with PVAc resin, the fitness between a tip and a root width of a pair of fingers δ of 0.5 mm indicated the highest efficiency of MOE for all species. And, the influence of δ on MOR was only found in oak finger-jointed wood glued with RPF resin and the desirable δ value for oak was 0.1 mm. However, it was found that the influence of δ on the strength performance was very small.

Development of Two-Finger Force Measuring System to Measure Two-Finger Gripping Force and Its Characteristic Evaluation (단축 힘센서를 이용한 두 손가락 잡기 힘측정장치 개발 및 특성평가)

  • Kim, Hyeon-Min;Shin, Hi-Suk;Yoon, Joung-Won;Kim, Gab-Soon
    • Journal of Sensor Science and Technology
    • /
    • v.20 no.3
    • /
    • pp.172-177
    • /
    • 2011
  • Finger patients can't use their hands because of the paralysis their fingers. Their fingers are recovered by rehabilitating training, and the rehabilitating extent can be judged by measuring the pressing force to be contacted with two fingers(thumb and first finger, thumb and middle finger, thumb and ring finger, thumb and little finger). At present, most hospitals have used a thin plastic-plate for measuring the two-finger grasping force, and we can only judge that they can grasp the plate with their two-finger through it, because the plate can't measure the two-finger grasping force. But, recently, the force measuring system for measuring two-finger grasping force was developed using three-axis force sensor, but it is very expensive, because it has a three-axis force sensor. In this paper, two-finger force measuring system with a one-axis force sensor which can measure two-finger grasping force was developed. The one-axis force sensor was designed and fabricated, and the force measuring device was designed and manufactured using DSP(Digital Signal Processing). Also, the grasping force test of men was performed using the developed two-finger force measuring system, it was confirmed that the grasping forces of men were different according to grasping methods, and the system can be used for measuring two-finger grasping force.

A Study on the Human Finger Model using Wire-type SMA Actuator (와이어형 형상기억합금 구동기를 이용한 인체 손가락 모델에 대한 연구)

  • Jung, Jin-Woo;Lim, Soo-Choel;Park, Young-Pil;Yang, Hyun-Seok;Park, No-Cheol
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.891-894
    • /
    • 2005
  • This paper describes a human finger model driven by shape memory alloy(SMA) wires. The finger model has three joints that are similar to human finger. Each joint is actuated with two wires in the antagonistic manner and six wires are used to actuate three finger joint. In order to obtain the desirable finger motion, the diameters of the SMA wires are designed with different diameters by considering the required actuating force and response time. The rotary sensors are used to measure the angle positions of the joints and PWM control using PID algorithm is used to achieve desired angle positions of the finger joints. After estimating the control performance of each finger joint for the desired angle position, the antagonistic motion control of the finger model is experimentally evaluated.

  • PDF

Effect of Trigger Finger on Pain, Grip Strength and Function of Upper Limb of Patients with Carpal Tunnel Syndrome: A Cross-sectional Study (방아쇠수지가 손목터널증후군 환자의 악력, 통증 및 상지기능에 미치는 영향: 단면적 연구)

  • Kim, Myoung-Kwon;Yun, Da-Eun
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.16 no.1
    • /
    • pp.63-71
    • /
    • 2021
  • PURPOSE: The purpose of this study was to investigate the effects of trigger finger on pain, muscle strength and function in carpal tunnel syndrome (CTS) patients. METHODS: A total of 60 subjects (30 carpal tunnel syndrome with trigger finger and 30 carpal tunnel syndrome without trigger finger) were assessment for pain, muscle strength (power grip, key pinch , tip to tip pinch, three jaw pinch) and function. The effect sizes of the two groups were compared, and the correlation between the trigger finger and each variable was analyzed. RESULTS: The results showed that there were significantly difference in the pain, muscle strength excluding three jaw pinch and function (p < .05). The results also showed correlation between trigger finger and pain (r = .552), muscle strength excluding three jaw pinch (power grip r = -.296, key pinch r = -.260, tip to tip pinch r = -.285), and function (r = .375). The function of carpal tunnel syndrome patients was related to pain (r = .550) and power grips (r = -.324) of muscle strength. CONCLUSION: In carpal tunnel syndrome patients with trigger finger compared to carpal tunnel syndrome, muscle weakness, pain increase, and function reduction were shown. In addition, trigger finger are correlated with muscle strength, pain and function, and muscle weakness and increased pain affect the daily living of carpal tunnel syndrome patients with triggers finger. Therefore, physical therapy interventions of carpal tunnel syndrome patients with trigger finger should be combined with treatment for muscle strength enhancement as well as pain reduction.

Three-Dimensional Analysis of Self-Heating Effects in SOI Device (SOI 소자 셀프-히팅 효과의 3차원적 해석)

  • 이준하;이흥주
    • Journal of the Semiconductor & Display Technology
    • /
    • v.3 no.4
    • /
    • pp.29-32
    • /
    • 2004
  • Fully depleted Silicon-on-Insulator (FD-SOI) devices lead to better electrical characteristics than bulk CMOS devices. However, the presence of a thin top silicon layer and a buried SiO2 layer causes self-heating due to the low thermal conductivity of the buried oxide. The electrical characteristics of FDSOI devices strongly depend on the path of heat dissipation. In this paper, we present a new three-dimensional (3-D) analysis technique for the self-heating effect of the finger-type and bar-type transistors. The 3-D analysis results show that the drain current of the finger-type transistor is 14.7% smaller than that of the bar-type transistor due to the 3-D self-heating effect. We have learned that the rate of current degradation increases significantly when the width of a transistor is smaller that a critical value in a finger-type layout. The current degradation fro the 3-D structures of the finger-type and bar-type transistors is investigated and the design issues are also discussed.

  • PDF

Development of Intelligent Robot's Hand with Three-Axis Finger Force Sensors for Intelligent Robot (3축 손가락 힘센서를 가진 지능로봇의 지능형 로봇손 개발)

  • Kim, Gab-Soon;Shin, Hi-Jun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.3
    • /
    • pp.300-305
    • /
    • 2009
  • This paper describes the intelligent robot's hand with three-axis finger force sensors for an intelligent robot. In order to grasp an unknown object safely, it should measure the mass of the object, and determine the grasping force using the mass, then control the robot's fingers with the grasping force. In this paper, the intelligent robot's hand for an intelligent robot was developed. First, the three-axis finger force sensors were designed and manufactured, second, the intelligent robot's hand with three-axis finger force sensors were designed and fabricated, third, the high-speed control system was designed and manufactured using DSP( digital signal processor), finally, the characteristic test to grasp an unknown object safely was carried out. It was confirmed that the developed intelligent robot's hand could grasp an unknown object safely.