• 제목/요약/키워드: Thread Joint Stiffness

검색결과 2건 처리시간 0.015초

볼트의 체결 강성이 추력 시험대에 미치는 영향 (The Effect of the Bolted Joint Stiffness on the Thrust Measurement Stand)

  • 이규준;정치훈;안동찬
    • 한국추진공학회지
    • /
    • 제20권5호
    • /
    • pp.31-39
    • /
    • 2016
  • 본 논문은 볼트 체결 강성이 추력 시험대에 미치는 영향을 연구한 것이다. 추력 시험대는 추진기관의 추력 성능을 평가하는 장비로 추력, 피치력, 요력(3 분력) 작용선에 대응하는 3 분력 계측선간의 평행도와 3 분력 계측선의 상호 직각도가 다분력 추력시험대의 성능을 좌우한다. 따라서 시험대의 초기 형상을 작동 상태에서 유지시키는 것이 추력 시험대의 핵심 기능이다. 본 논문에서는 추력 시험대의 볼트 체결과 로드셀 트레인의 나사 체결의 공차 정확도가 추력 시험대에 미치는 현상을 규명하고 이를 극복하는 방안을 제시하였다.

Performance control analysis of concrete-filled steel tube sepa-rated spherical joint wind power tower

  • Yang Wen;Guangmao Xu;Xiazhi Wu;Zhaojian Li
    • Structural Engineering and Mechanics
    • /
    • 제87권2호
    • /
    • pp.137-149
    • /
    • 2023
  • In this study, to explore the working performance of the CFST split spherical node wind power tower, two groups of CFST split spherical joint plane towers with different web wall thicknesses and a set of space systems were analyzed. The tower was subjected to a low-cycle repeated load test, and the hysteresis and skeleton curves were analyzed. ABAQUS finite element simulation was used for verification and comparison, and on this basis parameter expansion analysis was carried out. The results show that the failure mode of the wind power tower was divided into weld tear damage between belly bar, high strength bolt thread damage and belly rod flexion damage. In addition, increasing the wall thickness of the web member could render the hysteresis curve fuller. Finally, the bearing capacity of the separated spherical node wind power tower was high, but its plastic deformation ability was poor. The ultimate bearing capacity and ductility coefficient of the simulated specimens are positively correlated with web diameter ratio and web column stiffness ratio. When the diameter ratio of the web member was greater than 0.13, or the stiffness ratio γ of the web member to the column was greater than 0.022, the increase of the ultimate bearing capacity and ductility coefficient decreased significantly. In order to maximize the overall mechanical performance of the tower and improve its economy, it was suggested that the diameter ratio of the ventral rod be 0.11-0.13, while the stiffness ratio γ should be 0.02-0.022.