• Title/Summary/Keyword: Thoracic Spine Segmentation

Search Result 3, Processing Time 0.02 seconds

A Thoracic Spine Segmentation Technique for Automatic Extraction of VHS and Cobb Angle from X-ray Images (X-ray 영상에서 VHS와 콥 각도 자동 추출을 위한 흉추 분할 기법)

  • Ye-Eun, Lee;Seung-Hwa, Han;Dong-Gyu, Lee;Ho-Joon, Kim
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.1
    • /
    • pp.51-58
    • /
    • 2023
  • In this paper, we propose an organ segmentation technique for the automatic extraction of medical diagnostic indicators from X-ray images. In order to calculate diagnostic indicators of heart disease and spinal disease such as VHS(vertebral heart scale) and Cobb angle, it is necessary to accurately segment the thoracic spine, carina, and heart in a chest X-ray image. A deep neural network model in which the high-resolution representation of the image for each layer and the structure converted into a low-resolution feature map are connected in parallel was adopted. This structure enables the relative position information in the image to be effectively reflected in the segmentation process. It is shown that learning performance can be improved by combining the OCR module, in which pixel information and object information are mutually interacted in a multi-step process, and the channel attention module, which allows each channel of the network to be reflected as different weight values. In addition, a method of augmenting learning data is presented in order to provide robust performance against changes in the position, shape, and size of the subject in the X-ray image. The effectiveness of the proposed theory was evaluated through an experiment using 145 human chest X-ray images and 118 animal X-ray images.

Spinal Enumeration by Morphologic Analysis of Spinal Variants: Comparison to Counting in a Cranial-To-Caudal Manner

  • Yun, Sam;Park, Sekyoung;Park, Jung Gu;Huh, Jin Do;Shin, Young Gyung;Yun, Jong Hyouk
    • Korean Journal of Radiology
    • /
    • v.19 no.6
    • /
    • pp.1140-1146
    • /
    • 2018
  • Objective: To compare the spinal enumeration methods that establish the first lumbar vertebra in patients with spinal variants. Materials and Methods: Of the 1446 consecutive patients who had undergone computed tomography of the spine from March 2012 to July 2016, 100 patients (62 men, 38 women; mean age, 47.9 years; age range, 19-88 years) with spinal variants were included. Two radiologists (readers 1 and 2) established the first lumbar vertebra through morphologic analysis of the thoracolumbar junction, and labeled the vertebra by counting in a cranial-to-caudal manner. Inter-observer agreement was established. Additionally, reader 1 detected the 20th vertebra under the assumption that there are 12 thoracic vertebra, and then classified it as a thoracic vertebra, lumbar vertebra, or thoracolumbar transitional vertebra (TLTV), on the basis of morphologic analysis. Results: The first lumbar vertebra, as established by morphologic analysis, was labeled by each reader as the 21st segment in 65.0% of the patients, as the 20th segment in 31.0%, and as the 19th segment in 4.0%. Inter-observer agreement between the two readers in determining the first lumbar vertebra, based on morphologic analysis, was nearly perfect (${\kappa}$ value: 1.00). The 20th vertebra was morphologically classified as a TLTV in 60.0% of the patients, as the first lumbar segment in 31.0%, as the second lumbar segment in 4.0%, and as a thoracic segment in 5.0%. Conclusion: The establishment of the first lumbar vertebra using morphologic characteristics of the thoracolumbar junction in patients with spinal variants was consistent with the morphologic traits of vertebral segmentation.

Thoracic Spine Segmentation of X-ray Images Using a Modified HRNet (수정된 HRNet을 이용한 X-ray 영상의 흉추 분할 기법)

  • Lee, Ye-Eun;Lee, Dong-Gyu;Jeong, Ji-Hoon;Kim, Hyung-Kyu;Kim, Ho-Joon
    • Annual Conference of KIPS
    • /
    • 2022.05a
    • /
    • pp.705-707
    • /
    • 2022
  • 인체의 흉부 X-ray 영상으로부터 척추질환과 관련된 의료 진단지표를 자동으로 추출하는 과정을 위하여 흉추조직의 정확한 분할이 필요하다. 본 연구에서는 HRNet 기반의 학습을 통하여 흉추조직을 분할하는 방법을 고찰한다. 분할 과정에서 영상 내의 상대적인 위치 정보가 효과적으로 반영될 수 있도록, 계층별로 영상의 고해상도의 표현이 그대로 유지되는 구조와 저해상도의 특징 지도로 변환되는 구조가 병렬적으로 연결되는 형태의 심층 신경망 모델을 채택하였다. 흉부 X-ray 영상에서 콥각도(Cobb's angle)를 산출하는 문제를 대상으로 흉추 분할을 위한 학습 방법, 진단지표 추출 방법 등을 소개하며, 부수적으로 피사체의 위치 변화 및 크기 변화 등에 강인한 성능을 제공하기 위하여 학습 데이터를 증강하는 방법론을 제시하였다. 총 145개의 영상을 사용한 실험을 통하여 제안된 이론의 타당성을 평가하였다.