• Title/Summary/Keyword: Thioltransferase

Search Result 16, Processing Time 0.029 seconds

Transcription of Schizosaccharomyces pombe Thioltransferase-1 in Response to Stress Conditions

  • Kim, Min-Jung;Lim, Chang-Jin;Kim, Dae-Myung
    • BMB Reports
    • /
    • v.35 no.4
    • /
    • pp.409-413
    • /
    • 2002
  • Thioltransferase, also known as glutaredoxin, is an enzyme that catalyzes the reduction of a variety of disulfide compounds. In Schizosaccharomyces pombe, two thioltransferases were reported and the cDNA of one of the thioltransferases (thioltransferase-1) was cloned. Using a Northern blot assay, we investigated the thioltransferase transcription in response to various stress conditions. When the culture was shifted to a high temperature, the thioltransferases transcription was not significantly changed compared to the unshifted $30^{\circ}C$ culture. Treatment of zinc chloride to exponentially-growing cells remarkably increased the thioltransferase transcription, whereas the treatment of mercury chloride greatly reduced the transcription. Treatment of hydrogen peroxide and cadmium chloride caused no significant effects on the transcription of the thioltransferase. These results suggest that the transcription of thioltransferase-1 in S. pombe is induced in response to metal stress that is caused by zinc chloride, but not in response to heat stress or oxidative stress that is caused by hydrogen peroxide.

An L-Type Thioltransferase from Arabidopsis thaliana Leaves

  • Kim, Tae-Soo;Cho, Young-Wook;Kim, Joon-Chul;Jin, Chang-Duck;Han, Tae-Jin;Park, Soo-Sun;Lim, Chang-Jin
    • BMB Reports
    • /
    • v.32 no.6
    • /
    • pp.605-609
    • /
    • 1999
  • Thioltransferase, also called glutaredoxin, is a general GSH-disulfide reductase of importance for redox regulation. Previously, the protein thioltransferase, now called S-type thioltransferase, was purified and characterized from Arabidopsis thaliana seed. In the present study, a second thioltransferase, called L-type thioltransferase, was purified to homogeneity from Arabidopsis thaliana leaves. The purification procedures included DEAE-cellulose ion-exchange chromatography, Sephadex G-50 gel filtration, and glutathione-agarose affinity chromatography. The purified enzyme was confirmed to show a unique band on SDS-PAGE and its molecular weight was estimated to be 26.6 kDa, which appeared to be atypical compared with those of most other thioltransferase. It could utilize 2-hydroxyethyl disulfide, S-sulfocysteine, and insulin as substrates, and also contained dehydroascorbate reductase activity. Its optimum pH was 8.5 and its activity was greatly activated by L-cysteine. When it was kept for 30 min, it appeared to be very stable up to $70^{\circ}C$. It was activated by $MgCl_2$ and, on the contrary, inhibited by $ZnCl_2$, $MnCl_2$, and $AlCl_3$.

  • PDF

A Second Thioltransferase of Schizosaccharomyces pombe Contains Glutathione S-transferase Activity

  • Kim, Hong-Gyum;Park, Eun-Hee;Lim, Chang-Jin
    • BMB Reports
    • /
    • v.32 no.6
    • /
    • pp.535-540
    • /
    • 1999
  • Two types of the thioltransferase (also called glutaredoxin) have been previously detected in the cytosolic extract of Schizosaccharomyces pombe, a fission yeast. Previously, the one with a smaller molecular mass (14kDa) was purified and characterized. In the present study, the second thioltransferase was purified. The purification procedure included ammonium sulfate fractionation (40-80%), Sephadex G-200 gel filtration, DEAE-cellulose ion-exchange chromatography, Sephadex G-50 gel filtration, and glutathione-agarose affinity chromatography. The purified enzyme showed a single band on SDS-PAGE, and its molecular mass was determined to be 23 kDa. It utilizes various compounds as substrates, including 2-hydroxyethyl disulfide. Interestingly, we found that the purified thioltransferase also contains significant glutathione S-transferase activity.

  • PDF

Catalase, Glutathione S-Transferase and Thioltransferase Respond Differently to Oxidative Stress in Schizosaccharomyces pombe

  • Cho, Young-Wook;Park, Eun-Hee;Lim, Chang-Jin
    • BMB Reports
    • /
    • v.33 no.4
    • /
    • pp.344-348
    • /
    • 2000
  • The logarithmically growing Schizosaccharomyces pombe cells were subjected to high heat ($40^{\circ}C$), hydrogen peroxide, and heavy metals such as mercuric chloride and cadmium chloride. Then, the stress responses of catalase, glutathione S-transferase and thioltransferase were investigated. The high heat and cadmium chloride enhanced the catalase activity. The glutathione S-transferase activity of S. pombe cells was increased after treatments with heavy metals. The thioltransferase activity of S. pombe cells was completely abolished by mercuric chloride. Hydrogen peroxide caused no effect on the activities of glutathione S-transferase and thioltransferase. These results suggest that the response of S. pombe cells against oxidative stress is very complicated.

  • PDF

Characterization of Thioltransferase from Kale

  • Sa, Jae-Hoon;Yong, Mi-Young;Song, Byung-Lim;Lim, Chang-Jin
    • BMB Reports
    • /
    • v.31 no.1
    • /
    • pp.20-24
    • /
    • 1998
  • Thioltransferase, also known as glutaredoxin, is an enzyme that catalyzes the reduction of a variety of disulfides, including protein disulfides, in the presence of reduced glutathione. Thioltransferase was purified from kale through ammonium sulfate fractionation, DE-52 ion-exchange chromatography, Sephadex G-75 gel filtration, and Q-Sepharose ion-exchange chromatography. Its molecular size was estimated to be about 31,000 daltons on SDS-PAGE. The purified enzyme has an optimum pH of about 8.0 with 2-hydroxyethyl disulfide as a substrate. The enzyme also utilizes L-sulfocysteine, L-cystine, bovine serum albumin, and insulin as substrates in the presence of GSH. The enzyme has $K_m$ values of 0.24-0.67 mM for these substrates. The enzyme was partly inactivated after heating at $80^{\circ}C$ or higher temperature for 30 min. The enzyme was stimulated by various thiol compounds such as reduced glutathione, dithiothreitol, L-cysteine, and $\beta$-mercaptoethanol. This is a second example of a plant thioltransferase which was purified and characterized.

  • PDF

A Second Thioltransferase from Chinese Cabbage: Purification and Characterization

  • Cho, Young-Wook;Park, Eun-Hee;Lim, Chang-Jin
    • BMB Reports
    • /
    • v.32 no.2
    • /
    • pp.133-139
    • /
    • 1999
  • Thioltransferase, also known as glutaredoxin, was previously purified and characterized from Chinese cabbage (Brassica campestris ssp. napus var. pekinensis). However, in the process of gel filtration on Sephadex G-75, there were two activity peaks. In this study, a second thioltransferase (TTase CC-2) in the minor peak of the Sephadex G-75 elution profile was further purified using affinity chromatography on an S-hexylglutathione-agarose column by eluting with buffer solution containing 2.5 mM S-hexylglutathione. It showed a single band on SDS-PAGE indicating that TTase CC-2 is electrophoretically homogeneous. The molecular weight of TTase CC-2 was estimated to be about 22,000 daltons, and its isoelectric point was determined to be 6.73. Its size appears to be atypical and much larger than that of the first thioltransferase (TTase CC-1) from Chinese cabbage, and it can utilize 2-hydroxyethyl disulfide, S-sulfocysteine, and insulin as substrates. S-sulfocysteine was found to be a superior substrate for TTase CC-2. TTase CC-2 also displayed the reducing activity for non-disulfides such as dehydroascorbic acid. Its optimum pH was 8.5, which was consistent with that of TTase CC-1. TTase CC-2 activity was greatly activated by L-cysteine and reduced glutathione, and was found to be less heat-stable compared with TTase CC-1. Molecular and physiological differences between TTase CC-1 and TTase CC-2 remain to be elucidated. Chinese cabbage is the first plant which is known to contain two kinds of thioltransferases.

  • PDF

Thioltransferase (Glutaredoxin) from Chinese Cabbage: Purification and Properties

  • Cho, Young-Wook;Park, Eun-Hee;Lim, Chang-Jin
    • BMB Reports
    • /
    • v.31 no.4
    • /
    • pp.377-383
    • /
    • 1998
  • Thioltransferase, also known as glutaredoxin, was purified from Chinese cabbage (Brassica campestris ssp. napus var. pekinensis) by a combination of ion-exchange chromatography and gel filtration. Its purity was confirmed by SDS-polyacrylamide gel electrophoresis and its molecular weight was estimated to be about 12,000 which is comparable with those of most known thioltransferases. The enzyme utilizes 2-hydroxyethyl disulfide, S-sulfocysteine, ${\alpha}-chymotrypsin$, insulin, and trypsin as substrates in the presence of reduced glutathione. The enzyme has Km values of 0.03-0.97 mM for these substrates. It appeared to contain dehydroascorbate reductase activity. The pH optimum of the enzyme was 8.5, when 2-hydroxyethyl disulfide was used as a substrate. It was greatly activated by reduced glutathione. Its activity was not significantly lost when stored at high temperature, indicating its thermostable character. It may play an important role in thiol-disulfide exchange in plant cells.

  • PDF

Sulfhydryl-Related and Phenylpropanoid-Synthesizing Enzymes in Arabidopsis thaliana Leaves after Treatments with Hydrogen Peroxide, Heavy Metals, and Glyphosate

  • Park, Keum-Nam;Sa, Jae-Hoon;Lim, Chang-Jin
    • BMB Reports
    • /
    • v.32 no.2
    • /
    • pp.203-209
    • /
    • 1999
  • Three-week grown Arabidopsis thaliana leaves were wounded by cutting whole leaves with a razor blade into pieces (about$3\;mm\;{\times}\;3\;mm$) submerged in various solutions, and incubated in a growth chamber for 24 h. We measured and compared activities of several enzymes such as phenylalanine ammonia-lyase (PAL), tyrosine ammonia-lyase (TAL), thioredoxin, thioredoxin reductase, thioltransferase, glutathione reductase, and $NADP^+$ -malate dehydrogenase. PAL activity was decreased in $HgCl_2$-, $CdCl_2$-, and glyphosate-treated leaf slices, and could not be detected after treatment with $CdCl_2$. TAL activity was found to be maximal in the $CdCl_2$-treated leaf slices. Activity of thioredoxin, a small protein known as a cofactor of ribonucleotide reductase and a regulator of photosynthesis, was significantly increased in the $CdCl_2$-treated leaf slices, while thioredoxin reductase activity was maximal in the $HgCl_2$-treated leaf slices. Thioltransferase and glutathione reductase activities were significantly decreased in the $HgCl_2$-treated leaf slices. $NADP^+$ -malate dehydrogenase activity remained relatively constant after the chemical treatments. Our results strongly indicate that sulfhydryl-related and phenylpropanoid-synthesizing enzyme activities are affected by chemical treatments such as hydrogen peroxide, heavy metals, and glyphosate.

  • PDF

Regulation of Thioltransferase Activity from Schizosaccharomyces pombe

  • Cho, Young-Wook;Park, Eun-Hee;Lim, Chang-Jin
    • BMB Reports
    • /
    • v.33 no.5
    • /
    • pp.422-425
    • /
    • 2000
  • Thioltransferase (TTase), also known as glutaredoxin (Grx), is an enzyme catalyzing the reduction of a variety of disulfide compounds and acting as a cofactor for various enzymes such as ribonucleotide reductase. The Schizosaccharomyces pombe cells, exponentially grown in rich medium at $30^{\circ}C$, were shifted to $20^{\circ}C$ and $35^{\circ}C$. The yeast cells, shifted to $35^{\circ}C$, showed higher TTase activity than the cells continuously grown at $30^{\circ}C$, whereas the yeast cells, shifted to $20^{\circ}C$, gave lower TTase activity. The S. pombe cells, exponentially grown in minimal medium and shifted from $30^{\circ}C$ to $35^{\circ}C$ and $40^{\circ}C$, produced higher TTase activity. When the S. pombe cells were initially incubated in rich and minimal media at three different temperatures ($25^{\circ}C$, $30^{\circ}C$ and $35^{\circ}C$), they showed higher TTase activity at higher temperature. These results suggest that the TTase activity of S. pombe is regulated by temperature.

  • PDF

Growth-Dependent Variations in Antioxidant and Redox Enzyme Activities of Schizosaccharomyces pombe

  • Cho, Young-Wook;Park, Eun-Hee;Ahn, Ki-Sup;Kim, Dae-Myung;Lim, Chang-Jin
    • BMB Reports
    • /
    • v.34 no.3
    • /
    • pp.278-283
    • /
    • 2001
  • Antioxidant and redox enzyme activities are known to be involved in the cellular responses to various stresses. Their variations were observed according to the growth cycle of the fission yeast Schizosaccharomyces pombe. Peroxidase activity appeared to be notably higher in the early exponential phase than in the mid-exponential and stationary phases. However, catalase activity showed a variation pattern resembling the growth curve. Glutathione S-transferase activity was higher in the early exponential and late stationary phases. Activities of the two redox enzymes, thioredoxin and thioltransferase (glutaredoxin), were high in the stationary phase. However, their activities appeared to increase from the early exponential to mid-exponential phase. Total glutathione content had a varying pattern similar to that of thioredoxin and thioltransferase. However, its content in the early exponential phase was high. These results propose that antioxidant and redox enzymes tested are also involved in the mechanism of cell growth.

  • PDF