• Title/Summary/Keyword: Thin-film technology

Search Result 2,959, Processing Time 0.034 seconds

Development of micro check valve with polymer MEMS process for medical cerebrospinal fluid (CSF) shunt system (Polymer MEMS 공정을 이용한 의료용 미세 부품 성형 기술 개발)

  • Chang, J.K.;Park, C.Y.;Chung, S.;Kim, J.K.;Park, H.J.;Na, K.H.;Cho, N.S.;Han, D.C.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.1051-1054
    • /
    • 2000
  • We developed the micro CSF (celebrospinal fluid) shunt valve with surface and bulk micromachining technology in polymer MEMS. This micro CSF shunt valve was formed with four micro check valves to have a membrane connected to the anchor with the four bridges. The up-down movement of the membrane made the CSF on & off and the valve characteristic such as open pressure was controlled by the thickness and shape of the bridge and the membrane. The membrane, anchor and bridge layer were made of the $O_2$ RIE (reactive ion etching) patterned Parylene thin film to be about 5~10 microns in thickness on the silicon wafer. The dimension of the rectangular nozzle is 0.2*0.2 $\textrm{mm}^2$ and the membrane 0.45 mm in diameter. The bridge width is designed variously from 0.04 mm to 0.12 mm to control the valve characteristics. To protect the membrane and bridge in the CSF flow, we developed the packaging system for the CSF micro shunt valve with the deep RIE of the silicon wafer. Using this package, we can control the gap size between the membrane and the nozzle, and protect the bridge not to be broken in the flow. The total dimension of the assembled system is 2.5*2.5 $\textrm{mm}^2$ in square, 0.8 mm in height. We could precisely control the burst pressure and low rate of the valve varing the design parameters, and develop the whole CSF shunt system using this polymer MEMS fabricated CSF shunt valve.

  • PDF

A Study on the Simulation and DSF Molding of V-groove Type Light Guide for a Backlight Unit (백라이트 유닛용 V-그루브 도광판의 전산모사 및 DSF성형에 관한 비교연구)

  • Cho K. H.;Yoon K. H.
    • Transactions of Materials Processing
    • /
    • v.14 no.3 s.75
    • /
    • pp.282-290
    • /
    • 2005
  • Nowadays, TFT-LCD is widely used as display unit of many digital devices. And, the backlight unit(BLU) is used as a light source of TFT-LCD module. In the backlight unit, the most important component is a light guide, which guides the input light to the TFT-LCD module uniformly. Recently, many researchers have focused on improving the efficiency of BLU by changing the design and structure of a light guide. In the present paper, a series of simulation was performed to find the optimal luminance distribution of emanated light from the given geometry as the first step. From the results of simulations for the light guide with given V-groove pattern, the emanated light from it is mostly affected by the groove angle. In the case of acute angle, about 74 degrees was found as optimal angle to satisfy the restrictions of angular luminance distribution, FWHM, the maximum luminance, etc. However, as far as the average luminance value was concerned, the case of 120 degrees(abtuse angle) was found to be the best while prism films were added to the BLU. As a next step the light guide samples of 74 and 120 degrees were manufactured by DSF method, which was recently proposed by the authors. Of course, most of design parameters were chosen by the aid of simulation results. Finally, the results of average luminance values were compared between the simulation and DSF molded samples.

A Ka-band 10 W Power Amplifier Module utilizing Pulse Timing Control (펄스 타이밍 제어를 활용한 Ka-대역 10 W 전력증폭기 모듈)

  • Jang, Seok-Hyun;Kim, Kyeong-Hak;Kwon, Tae-Min;Kim, Dong-Wook
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.12
    • /
    • pp.14-21
    • /
    • 2009
  • In this paper, a Ka-band 10 W power amplifier module with seven power MMIC bare dies is designed and fabricated using MIC technology which combines multiple MMIC chips on a thin film substrate. Modified Wilkinson power dividers/combiners and CBFGCPW-Microstrip transitions for suppressing resonance and reducing connection loss are utilized for high-gain and high-power millimeter wave modules. A new TTL pulse timing control scheme is proposed to improve output power degradation due to large bypass capacitors in the gate bias circuit. Pulse-mode operation time is extended more than 200 nsec and output power increase of 0.62 W is achieved by applying the proposed scheme to the Ka-band 10 W power amplifier module operating in the pulsed condition of 10 kHz and $5\;{\mu}sec$. The implemented power amplifier module shows a power gain of 59.5 dB and an output power of 11.89 W.

A study on the deposition of DLC films by magnetron PECVD (Magnetron PECVD에 의한 DLC 박막의 제작에 관한 연구)

  • Kim, Soung-Young;Lee, Jai-Sung;Park, Jin-Seok
    • Proceedings of the KIEE Conference
    • /
    • 1996.07c
    • /
    • pp.1446-1449
    • /
    • 1996
  • Thin films of diamond-like carbon(DLC) have been deposited using a magnetron plasma-enhanced chemical vapor deposition(PECVD) method with an rf(13.56 MHz) plasma of $C_{3}H_{8}$. From the Langmuir probe I-V characteristics, it can be observed that increasing the magnetic field yields an increase of the temperature($T_e$) and density($N_e$) of electron. At a magnetic field of 82 Gauss, the estimated values of $T_e$ and $N_e$ are approximately $1.5\;{\times}\;10^5$ K(13.5 eV) and $1.3\;{\times}\;10^{11}\;cm^{-3}$, respectively. Such a highly dense plasma can be attributed to the enhanced ionization caused by the cyclotron motion of electrons in the presence of a magnetic field. On the other hand, the negative dc self-bias voltage($-V_{sb}$) decreases with an increasing magnetic field, which is irrespective of gas pressure in the range of $1{\sim}7$ mTorr. This result is well explained by a theoretical model considering the variation of $T_e$. Deposition rates of DLC films increases with a magnetic field. This may be due to the increased mean free path of electrons in the magnetron plasma. Structures of DLC films are examined by using various techniques such as FTIR and Raman spectroscopy. Most of hydrocarbon bonds in DLC films prepared consist of $sp^3$ tetrahedral bonds. Increasing the rf power leads to an enhancement of cross-linking of carbon atoms in DLC films. At approximately 140 W, the maximum film density obtained is about 2.4 $g/cm^3$.

  • PDF

Charge/discharge Properties of $V_{6}O_{13}$ Composite/Li Cell with Solid Polymer Electrolyte (고체 고분자 전해질을 사용한 $V_{6}O_{13}$ Composite/Li Cell의 충방전 특성)

  • Kim, J.U.;Yu, Y.H.;Jeong, I.S.;Park, B.K.;Gu, H.B.;Moon, S.I.
    • Proceedings of the KIEE Conference
    • /
    • 1996.07c
    • /
    • pp.1414-1417
    • /
    • 1996
  • The purpose of this study Is to research and develop $V_{6}O_{13}$ composite cathode for lithium thin film battery. $V_{6}O_{13}$ represents a class of cathode active material used in Li rechargeable batteries. In this study, we investigated cyclic voltammetry and charge/discharge characteristics of $V_6O_{13}$/SPE/Li cells. Cyclic voltammogram of $V_{6}O_{13}$/SPE/Li cell at scan rate 1mV/sec showed reduction peaks of 2.25V and 2.4V and oxidation peaks of 2.4V and 2.2V. The discharge curve of $V_{6}O_{13}$/SPE/Li cell showed 4 potential plateaus. The discharge capacity was decreased in the beginning of charge/discharge cycling. After 8th cycling, the discharge capacity was stable. The discharge capacity of 1st cycle and 15th cycle was 290mAh/g and 147mAh/g at $25^{\circ}C$, respectively.

  • PDF

Changes of Thin Film Coating on Polymer Lenses with Varying Temperature (온도에 의한 고분자 렌즈의 재질별 코팅 박막의 변화)

  • Noh, Hyeran
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.19 no.1
    • /
    • pp.1-8
    • /
    • 2014
  • Purpose: To observe changes of coatings and lens materials with varying temperature to understand effect of temperature on plastic lens. Methods: In this study, three lenses of different refractive indices (2 of thiourethane oriented lenses, an allyl diglycol carbonate oriented lens) were exposed to high temperature (50, 80, and 100 degree) for 5 hours and changes of individual coating (anti-refractive coating, hard coating, and water repellent coating) were measured. Results: As a result, high-refractive index lenses did not exhibit significant variation of hardness. However, hardness of mid-refractive index lens were decreased when exposed to high temperature and destructions of hard coating layer was inferred. Surface contact angles of lens were decreased with increasing temperature and water repellent coating layer were damaged at higher than 80 degree. Conclusions: Multi including water repellent coatings on all three lenses with different refractive indices were damaged when exposed to at or higher than 80 degree. The degree of changes in mechanical and physical properties were depended on polymer material type.

Invention of Ultralow - n SiO2 Thin Films

  • Dung, Mai Xuan;Lee, June-Key;Soun, Woo-Sik;Jeong, Hyun-Dam
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.281-281
    • /
    • 2010
  • Very low refractive index (<1.4) materials have been proved to be the key factor improving the performance of various optical components, such as reflectors, filters, photonic crystals, LEDs, and solar cell. Highly porous SiO2 are logically designed for ultralow refractive index materials because of the direct relation between porosity and index of refraction. Among them, ordered macroporous SiO2 is of potential material since their theoretically low refractive index ~1.10. However, in the conventional synthesis of ordered macroporous SiO2, the time required for the crystallization of organic nanoparticles, such as polystyrene (PS), from colloidal solution into well ordered template is typical long (several days for 1 cm substrate) due to the low interaction between particles and particle - substrate. In this study, polystyrene - polyacrylic acid (PS-AA) nanoparticles synthesized by miniemulsion polymerization method have hydrophilic polyacrylic acid tails on the surface of particles which increase the interaction between particle and with substrate giving rise to the formation of PS-AA film by simply spin - coating method. Less ordered with controlled thickness films of PS-AA on silicon wafer were successfully fabricated by changing the spinning speed or concentration of colloidal solution, as confirmed by FE-SEM. Based on these template films, a series of macroporous SiO2 films whose thicknesses varied from 300nm to ~1000nm were fabricated either by conventional sol - gel infiltration or gas phase deposition followed by thermal removal of organic template. Formations of SiO2 films consist of interconnected air balls with size ~100 nm were confirmed by FE-SEM and TEM. These highly porous SiO2 show very low refractive indices (<1.18) over a wide range of wavelength (from 200 to 1000nm) as shown by SE measurement. Refraction indices of SiO2 films at 633nm reported here are of ~1.10 which, to our best knowledge, are among the lowest values having been announced.

  • PDF

Effect of deposition parameters on structure of ZnO films deposited by an DC Arc Plasmatron

  • Penkov, Oleksiy V.;Chun, Se-Min;Kang, In-Jae;Lee, Heon-Ju
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.255-255
    • /
    • 2011
  • Zinc oxide based thin films have been extensively studied in recent several years because they have very interesting properties and zinc oxide is non-poisonous, abundant and cheap material. ZnO films are employed in different applications like transparent conductive layers in solar cells, protective coatings and so on. Wide industrial application of the ZnO films requires of development of cheap, effective and scalable technology. Typically used technologies don't completely satisfy the industrial requirements. In the present work, we studied effect of the deposition parameters on the structure and properties of ZnO films deposited by DC arc plasmatron. The varied parameters were gas flow rates, precursor composition, substrate temperature and post-deposition annealing temperature. Vapor of Zinc acetylacetone was used as source materials, oxygen was used as working gas and argon was used as the cathode protective gas and a transport gas for the vapor. The plasmatron power was varied in the range of 700-1500 watts. Flow rate of the gases and substrate temperature rate were varied in the wide range to optimize the properties of the deposited coatings. After deposition films were annealed in the hydrogen atmosphere in the wide range of temperatures. Structure of coatings was investigated using XRD and SEM. Chemical composition was analyzed using x-ray photoelectron spectroscopy. Sheet conductivity was measured by 4-point probe method. Optical properties of the transparent ZnO-based coatings were studied by the spectroscopy. It was shown that deposition by a DC Arc plasmatron can be used for low-cost production of zinc oxide films with good optical and electrical properties. Increasing of the oxygen content in the gas mixture during deposition allow to obtain high-resistive protective and insulation coatings with high adhesion to the metallic surface.

  • PDF

Thin Film Multijunction Thermal Converter for Low Input Voltage with Low Frequency (저주파수 및 저입력전압용 박막형 다중접합 열전변환기)

  • Hwang, Chan-Soon;Lee, Hyung-Ju;Kim, Jin-Sup;Lee, Jung-Hee;Park, Se-Il;Kwon, Sung-Won
    • Journal of Sensor Science and Technology
    • /
    • v.11 no.3
    • /
    • pp.145-154
    • /
    • 2002
  • NiCr-heaters with three different thicknesses ranging from 400 nm to 800 nm were fabricated and their characteristics were compared for the purpose of developing a chromel-alumel multijunction thermal converter for low input voltage with low frequency. The thermoelectric effect-induced AC-DC voltage transfer difference of the thermal converter with a built-in NiCr-heater of 400 nm-thickness was ${\pm}0.51{\sim}1.69\;ppm$ in the DC reversing frequency of $40\;Hz{\sim}10\;kHz$ with appling $0.5\;V_{rms}$ and the difference was increased to ${\pm}40{\sim}{\pm}115\;ppm$ in the frequency of $40\;Hz{\sim}1\;MHz$, when both thermoelectric effects and frequency effects were considered, showing the thermal converter would be suitable for the low input voltage application with low frequency.

Growth of ZnO thin film by pulsed laser deposition and photocurrent study on the splitting of valance band (펄스 레이저 증착(PLD)법에 의한 ZnO 박막 성장과 가전자대 갈라짐에 대한 광전류 연구)

  • Hong, Kwang-Joon
    • Journal of Sensor Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.160-168
    • /
    • 2005
  • ZnO epilayer were synthesized by the pulesd laser deposition(PLD) process on $Al_{2}O_{3}$ substrate after irradiating the surface of the ZnO sintered pellet by the ArF(193 nm) excimer laser. The epilayers of ZnO were achieved on sapphire ($Al_{2}O_{3}$) substrate at a temperature of $400^{\circ}C$. The crystalline structure of epilayer was investigated by the photoluminescence. The carrier density and mobility of ZnO epilayer measured with Hall effect by van der Pauw method are $8.27{\times}1016cm^{-3}$ and $299cm^{2}/V{\cdot}s$ at 293 K, respectively. The temperature dependence of the energy band gap of the ZnO obtained from the absorption spectra was well described by the Varshni's relation, $E_{g}(T)$=3.3973 eV-($2.69{\times}10^{-4}$ eV/K)$T^{2}$/(T+463K). The crystal field and the spin-orbit splitting energies for the valence band of the ZnO have been estimated to be 0.0041 eV and 0.0399 eV at 10 K, respectively, by means of the photocurrent spectra and the Hopfield quasicubic model. These results indicate that the splitting of the ${\Delta}so$ definitely exists in the ${\Gamma}_{6}$ states of the valence band of the ZnO. The three photocurrent peaks observed at 10 K are ascribed to the $A_{1}-$, $B_{1}-$, and $C_{1}-$exciton peaks for n = 1.