• Title/Summary/Keyword: Thin-film module

Search Result 123, Processing Time 0.03 seconds

Study on The Anti-Shock Performance Evaluation of TFT-LCD module for Mobile IT Devices (이동형 정보통신 기기용 화면표시 장치의 내충격 평가 방법 연구)

  • Kim Byung-Sun;Kim Jung-Woo;Lee Dock-Jin;Choi Jae-Boong;Kim Young-Jin;Baik Seung-Hyun;Chu Young-Bee;Koo Ja-Choon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.7 s.184
    • /
    • pp.130-137
    • /
    • 2006
  • TFT-LCD(Thin Film Transistor Liquid Crystal Display) module is representative commercial product of FPD(Flat Panel Display). Thickness of TFT-LCD module is very thin. It is adopted for major display unit for IT devices such as Cellular Phone, Camcorder, Digital camera and etc. Due to the harsh user environment of mobile IT devices, it requires complicated structure and tight assembly. And user requirements for the mechanical functionalities of TFT-LCD module become more strict. However, TFT-LCD module is normally weak to high level transient mechanical shock. Since it uses thin crystallized panel. Therefore, anti-shock performance is classified as one of the most important design specifications. Traditionally, the product reliability against mechanical shock is confirmed by empirical method in the design-prototype-drop/impact test-redesign paradigm. The method is time-consuming and expensive process. It lacks scientific insight and quantitative evaluation. In this article, a systematic design evaluation of TFT-LCD module for mobile IT devices is presented with combinations of FEA and testing to support the optimal shock proof display design procedure.

A Study on properties of Lower Electrode thin films solar cell for Mo thin film (박막태양전지 하부전극용 Mo 박막특성 연구)

  • Yang, Hyeon-Hun;Kim, Young-Jun;Jeong, Woon-Jo;Park, Gye-Choon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.321-322
    • /
    • 2007
  • In order to increase the cost effectiveness of solar cells, module production should be treated more comprehensively. Back contact cells offer distinct advantage in the interconnection of cells to modules. Thereby Mo thin film were prepared in order to clarify optimum conditions for growth of the thin film depending upon process, and then by changing a number of deposition conditions and substrate temperature conditions variously, structural and electrical characteristics were measured. For the manufacture of the Mo were vapor-deposited in the named order. Among them, Mo were vapor-deposited by using the sputtering method in consideration of their adhesive force to the substrate, and the DC power was controlled so that the composition of Mo, while the surface temperature having an effect on the quality of the thin film was changed from R.T$[^{\circ}C]$ to $200[^{\circ}C]$ at intervals of $50[^{\circ}C]$. Micro-structural studies were carried out by XRD (D/MAX-1200, Rigaku Co.) and SEM (JSM-5400, Jeol Co.). Electrical properties were measured by CMT-SR3000 Measurement System.

  • PDF

일사량에 따른 태양광 발전출력 분석

  • Jeong, Jong-Uk;Kim, Seon-Gu
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.210-210
    • /
    • 2009
  • This paper describes the analysis results of an generated power with a inclined solar radiation. 2 different types of modules were employed to study the effect of the a inclined solar radiation on the generated power amount. As a result, it was confirmed that the generated power increased with the solar radiation and the mono crystal type cells generated higher power than the thin film type cells.

  • PDF

R&D activities of a-Si:H thin film solar cells by LG Electronics

  • Lee, Don-Hui
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2007.04a
    • /
    • pp.19-19
    • /
    • 2007
  • Recently, we have developed p-i-n hydrogenated amorphous silicon (a-Si:H) single junction (SJ) thin film solar cells with RF (13,56MHz) plasma enhanced chemical vapor deposition (PECVD) systems, and also successfully fabricated the mini-modules (>300$cm^2$), using laser scribing technique to form an integrated series connection, The efficiency of a mini-module was 7.4% (Area=305$cm^2$, $I_{SC}$=0.25A, $V_{OC}$=14.74V, FF=62%).

  • PDF

A Case Study on the Power Performance Characteristics of Building Integrated PV System with Amorphous Silicon Transparent Solar Cells (비정질 실리콘 투과형 태양전지를 적용한 BIPV 시스템 발전 성능에 관한 사례 연구)

  • Jung, Sun-Mi;Song, Jong-Hwa;Lee, Sung-Jin;Yoon, Jong-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.49-52
    • /
    • 2009
  • Practical building integrated photovoltaic system built by Kolon E&C has been monitored and evaluated with respect to power generation, which was installed in Deokpyeong Eco Service Area in Deokpyeong, Gyeonggi, Korea. The amorphous silicon transparent PV module in this BIPV system has 44Wp in power output per unit module and 10% of transmittance with the unit dimension with $980mm{\times}950mm$. The BIPV system was applied as the skylight in the main entrance of the building. This study provided the database for the practical application of the transparent thin-film PV module for BIPV system through 11 month monitoring as well as various statistical analyses such as monthly power output and insolation. Average monthly power output of the system was 52.9kWh/kWp/month which is a 60% of power output of the previously reported data obtained under $30^{\circ}$of an inclined PV module facing south(azimuth=0). This lower power output can be explained by the installation condition of the building facing east, west and south, which was resulted from the influence of azimuth.

  • PDF

Effect of Complex Agent NH3 Concentration on the Chemically Deposited Zn Compound Thin Film on the $Cu(In,Ga)Se_2$

  • Shin, Dong-Hyeop;Larina, Liudmila;Yun, Jae-Ho;Ahn, Byung-Tae;Park, Hi-Sun
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2010.05a
    • /
    • pp.35.1-35.1
    • /
    • 2010
  • The Cu(In,Ga)Se2(CIGS) thin film solar cells have been achieved until almost 20% efficiency by NREL. These solar cells include chemically deposited CdS as buffer layer between CIGS absorber layer and ZnO window layer. Although CIGS solar cells with CdS buffer layer show excellent performance, many groups made hard efforts to overcome its disadvantages in terms of high absorption of short wavelength, Cd hazardous element. Among Cd-free candidate materials, the CIGS thin film solar cells with Zn compound buffer layer seem to be promising with 15.2%(module by showa shell K.K.), 18.6%(small area by NREL). However, few groups were successful to report high-efficiency CIGS solar cells with Zn compound buffer layer, compared to be known how to fabricate these solar cells. Each group's chemical bah deposition (CBD) condition is seriously different. It may mean that it is not fully understood to grow high quality Zn compound thin film on the CIGS using CBD. In this study, we focused to clarify growth mechanism of chemically deposited Zn compound thin film on the CIGS, especially. Additionally, we tried to characterize junction properties with unfavorable issues, that is, slow growth rate, imperfect film coverage and minimize these issues. Early works reported that film deposition rate increased with reagent concentration and film covered whole rough CIGS surface. But they did not mention well how film growth of zinc compound evolves homogeneously or heterogeneously and what kinds of defects exist within film that can cause low solar performance. We observed sufficient correlation between growth quality and concentration of NH3 as complex agent. When NH3 concentration increased, thickness of zinc compound increased with dominant heterogeneous growth for high quality film. But the large amounts of NH3 in the solution made many particles of zinc hydroxide due to hydroxide ions. The zinc hydroxides bonded weakly to the CIGS surface have been removed at rinsing after CBD.

  • PDF

Convergence Study on Fabrication and Plasma Module Process Technology of ReRAM Device for Neuromorphic Based (뉴로모픽 기반의 저항 변화 메모리 소자 제작 및 플라즈마 모듈 적용 공정기술에 관한 융합 연구)

  • Kim, Geunho;Shin, Dongkyun;Lee, Dong-Ju;Kim, Eundo
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.10
    • /
    • pp.1-7
    • /
    • 2020
  • The manufacturing process of the resistive variable memory device, which is the based of neuromorphic device, maintained the continuity of vacuum process and applied plasma module suitable for the production of the ReRAM(resistive random access memory) and process technology for the neuromorphic computing, which ensures high integrated and high reliability. The ReRAM device of the oxide thin-film applied to the plasma module was fabricated, and research to improve the properties of the device was conducted through various experiments through changes in materials and process methods. ReRAM device based on TiO2/TiOx of oxide thin-film using plasma module was completed. Crystallinity measured by XRD rutile, HRS:LRS current value is 2.99 × 103 ratio or higher, driving voltage was measured using a semiconductor parameter, and it was confirmed that it can be driven at low voltage of 0.3 V or less. It was possible to fabricate a neuromorphic ReRAM device using oxygen gas in a previously developed plasma module, and TiOx thin-films were deposited to confirm performance.

Pressure Sensing Properties of AlN Thin Films Sputtered at Room Temperature

  • Seok, Hye-Won;Kim, Sei-Ki;Kang, Yang-Koo;Lee, Youn-Jin;Hong, Yeon-Woo;Ju, Byeong-Kwon
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.2
    • /
    • pp.94-98
    • /
    • 2014
  • Aluminum nitride (AlN) thin films with a TiN buffer layer have been fabricated on SUS430 substrate by RF reactive magnetron sputtering at room temperature under 25~75% $N_2$ /Ar. The characterization of film properties were performed using surface profiler, X-ray diffraction, X-ray photoelectron spectroscopy(XPS), and pressure-voltage measurement system. The deposition rates of AlN films were decreased with increasing the $N_2$ concentration owing to lower mass of nitrogen ions than Ar. The as-deposited AlN films showed crystalline phase, and with increasing the $N_2$ concentration, the peak of AlN(100) plane and the crystallinity became weak. Any change in the preferential orientation of the as-deposited AlN films was not observed within our $N_2$ concentration range. But in the case of 50% $N_2$ /Ar condition, the peak of (002) plane, which is determinant in pressure sensing properties, appeared. XPS depth profiling of AlN/TiN/SUS430 revealed Al/N ratio was close to stoichiometric value (45:47) when deposited under 50% $N_2/Ar$ atmosphere at room temperature. The output signal voltage of AlN sensor showed a linear behavior between 26~85 mV, and the pressure-sensing sensitivity was calculated as 7 mV/MPa.

Optimization of address delay time in PDP by controlling the MgO characteristics

  • Jeong, Sang-Cheol;Jeong, Jong-In;Kim, Jeong-Jun;Song, Min-Ki;Kim, Ki-Bum;Mo, Bu-Kyung;Woun, Yong-Kyun;Yoon, Chang-Bun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.965-969
    • /
    • 2008
  • MgO thin film is widely used in PDP panel for protecting the dielectric layer and making firing voltage low. In this paper, the MgO thin film and discharge characteristics was analyzed as hydrogen flow rate increasing. Using hydrogen in deposition chamber makes add delay time of PDP module longer or shorter. It is the reason why thin film surface layer thickness on the MgO surface changes.

  • PDF

Thin Film Effects on Side Channel Signals (부 채널 신호에 대한 박막의 영향)

  • Sun, Y.B.
    • Journal of the Semiconductor & Display Technology
    • /
    • v.12 no.2
    • /
    • pp.51-56
    • /
    • 2013
  • Even if transmissions through normal channel between ubiquitous devices and terminal readers are encrypted, any extra sources of information retrieved from encrypting module can be exploited to figure out the key parameters, so called side channel attack. Since side channel attacks are based on statistical methods, making side channel signal weak or complex is the proper solution to prevent the attack. Among many countermeasures, shielding the electromagnetic signal and adding noise to the EM signal were examined by applying different thicknesses of thin films of ferroelectric (BTO) and conductors (copper and gold). As a test vehicle, chip antenna was utilized to see the change in radiation characteristics: return loss and gain. As a result, the ferroelectric BTO showed no recognizable effect on both shielding and adding noise. Cu thin film showed increasing shielding effect with thickness. Nanometer Au exhibited possibility in adding noise by widening of bandwidth and red shifting of resonating frequencies.