• Title/Summary/Keyword: Thin sensing film

Search Result 253, Processing Time 0.022 seconds

Hydrogen sensing of Nano thin film and Nanowire structured cupric oxide deposited on SWNTs substrate: A comparison

  • ;;오동훈;;정혁;김도진
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2009년도 춘계학술발표대회
    • /
    • pp.52.1-52.1
    • /
    • 2009
  • Cupric oxide (CuO) is a p-type semiconductor with band gap of ~1.7 eV and reported to be suitable for catalysis, lithium-copper oxide electrochemical cells, and gas sensors applications. The nanoparticles, plates and nanowires of CuO were found sensing to NO2, H2S and CO. In this work, we report about the comparison about hydrogen sensing of nano thin film and nanowires structured CuO deposited on single-walled carbon nanotubes (SWNTs). The thin film and nanowires are synthesized by deposition of Cu on different substrate followed by oxidation process. Nano thin films of CuO are deposited on thermally oxidized silicon substrate, whereas nanowires are synthesized by using a porous thin film of SWNTs as substrate. The hydrogen sensing properties of synthesized materials are investigated. The results showed that nanowires cupric oxide deposited on SWNTs showed higher sensitivity to hydrogen than those of nano thin film CuO did.

  • PDF

Highly sensitive CO sensing properties of multilayered $TiO_2$ thin films by colloidal templating

  • ;;;;;윤석진
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2010년도 하계학술대회 논문집
    • /
    • pp.17-17
    • /
    • 2010
  • We investigate CO gas sensing properties of multilayered TiO2 thin film gas sensors fabricated by colloidal templating of 300 nm of polymer spheres. Compared with plain films, the multilayered films show enhanced gas sensing with higher sensitivity and faster response. Also, colloidal templating by using smaller spheres (300 nm in diameter) leads to close-packed multilayered TiO2 thin films with very large-scale. This result suggest that understanding and control of the structures on the sensing properties of multilayered TiO2 thin films by colloidal templating is important in developing the films for real applications.

  • PDF

박막 형 가스 센서에 있어서 가스 감지 속도에 대한 막 두께의 영향 (Effect of Film Thickness on Gas Sensing Behavior of Thin-Film-Type Gas Sensor)

  • 유도준;준 타마키;노리오 미우라;노보루 야마조에;박순자
    • 한국재료학회지
    • /
    • 제6권7호
    • /
    • pp.716-722
    • /
    • 1996
  • 박막 형 가스 센서의 막 두께가 가스 감지 특성에 미치는 영향을 단순화된 모델로부터 수식으로 유도하여 해석하였고, 그것을 ${SnO}_{2}$와 CuO-${SnO}_{2}$ 박막의 ${H}_{2}S$ 감응 특성에 대한 실험 결과에 적용하였다. 유도된 수식으로부터 박막 가스 센서의 가스 감지 특성은 가스의 박막 안으로의 확산성에 크게 의존하며, 그 가스 확산성은 박막의 두께, 가스의 센서 재료의 반응성, 작동 온도 등에 의해서 결정됨을 알 수 있었다. 또한 이 수식은 CuO-${SnO}_{2}$ 박막의 ${H}_{2}S$ 감응 특성에 대한 실험 결과와 비교적 잘 일치하였고, CuO-${SnO}_{2}$ 박막과 ${SnO}_{2}$ 박막의 서로 판이한 ${H}_{2}S$ 감응 특성에 대한 설명에 적용되었다. 이로부터, 일반적인 산화물 반도체식 가스 센서의 가스 감지 특성이 가스 확산성에 의해서 어떻게 지배되는가를 구체적으로 제안하였다.

  • PDF

NH3 Sensing Properties of SnO Thin Film Deposited by RF Magnetron Sputtering

  • Vu, Xuan Hien;Lee, Joon-Hyung;Kim, Jeong-Joo;Heo, Young-Woo
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.272-272
    • /
    • 2014
  • SnO thin films, 100 nm in thickness, were deposited on glass substrates by RF magnetron sputtering. A stack structure of $SnO_2/SnO$, where few nanometers of $SnO_2$ were determined on the SnO thin film by X-ray photoelectron spectroscopy. In addition, XPS depth profile analysis of the pristine and heat treated thin films were introduced. The electrical behavior of the as-sputtered films during the annealing was recorded to investigate the working conditions for the SnO sensor. Subsequently, The NH3 sensing properties of the SnO sensor at operating temperature of $50-200^{\circ}C$ were examined, in which the p-type semiconducting sensing properties of the thin film were noted. The sensor shows good sensitivity and repeatability to $NH_3$ vapor. The sensor properties toward several gases like $H_2S$, $CH_4$ and $C_3H_8$ were also introduced. Finally, a sensing mechanism was proposed and discussed.

  • PDF

$\alpha$-Fe$_2$O$_3$ 박막 센서의 환원성 가스감지특성 (Sensing Properties of $\alpha$-Fe$_2$O$_3$ Thin Film Gas Sensor to Reducing Gases)

  • 이은태;장건익;이덕동
    • 한국세라믹학회지
    • /
    • 제36권5호
    • /
    • pp.465-470
    • /
    • 1999
  • Sensing properties of $\alpha$-Fe2O3 thin film to reducing gases such as CHx and CO were systematically examined after deposition on Al2O3 substrate by PECVD(Plasma Enhanced Chemical Vapor Deposition)technique. Microstructure of deposited $\alpha$-Fe2O3 thin film showed the porous island structure. This specimen was annealed at 450, 550, $650^{\circ}C$ to enhance the gas sensing properties and investigated in terms of CO and C4H10 concentration from 500ppm to 3,000 ppm at operating temperature of 35$0^{\circ}C$ The gas sensitivity(%) to C4H10 measured at the operating temperature of 35$0^{\circ}C$ was 98.24 (highest sensitivity) 69.51 to CO and 2% to CH4 respectviely.

  • PDF

박막형 NTC 열형 센서의 제작 및 특성 평가 (Fabrication and characteristic of thin-film NTC thermal sensors)

  • 유미나;이문호;유재용
    • 센서학회지
    • /
    • 제15권1호
    • /
    • pp.65-70
    • /
    • 2006
  • Characteristics of thin-film NTC thermal sensors fabricated by micromachining technology were studied as a function of the thickness of membrane. The overall-structure of thermal sensor has a form of Au/Ti/NTC/$SiO_{X}$/(100)Si. NTC film of $Mn_{1.5}CoNi_{0.5}O_{4}$ with 0.5 mm in thickness was deposited on $SiO_{X}$ layer (1.2 mm) by PLD (pulsed laser deposition) and annealed at 873-1073 K in air for 1 hour. Au(200 nm)/Ti(100 nm) electrode was coated on NTC film by dc sputtering. By the results of microstructure, X-ray and NTC analysis, post-annealed NTC films at 973 K for 1 hour showed the best characteristics as NTC thermal sensing film. In order to reduce the thermal mass and thermal time constant of sensor, the sensing element was built-up on a thin membrane with the thickness of 20-65 mm. Sensors with thin sensing membrane showed the good detecting characteristics.

Magnetron sputtering으로 증착한 ZnO 박막의 특성과 열처리에 따른 비저항과 미세구조 (A properties of ZnO thin film deposited by magnetron sputtering and its resistivity and microstructure due to annealing)

  • 이승환;성영권;김종관
    • E2M - 전기 전자와 첨단 소재
    • /
    • 제10권2호
    • /
    • pp.126-133
    • /
    • 1997
  • In order to apply for the gas sensing layer and the piezoelectric thin film devices, we studied the effects of magnetron sputtering conditions and annealing temperature on the electrical and structual characteristics of the ZnO thin film. The optimal deposition conditions, in order to obtain a c axis of the ZnO (002) phase thin film which is perpendicular to SiO$_{2}$/Si substrate, were like these ; substrate temperature 150.deg. C, chamber pressure 2 mtorr, R.F. power 300 watts, gas flow ratio 0.4[O$_{2}$(Ar + $O_{2}$)]. When the ZnO thin film was annealed in 600.deg. C, $O_{2}$ gas ambient for 1 hr, the resistivity was 2.6 x 10$^{2}$.ohm.cm and the grain size of ZnO thin film was less than 1 .mu.m. So the ZnO thin film acquired from above conditions can apply for the gas sensing layer which require a c axis perpendicular to the substrate surface.

  • PDF

$WO_3$ 박막을 이용한 $NO_x$ 센서의 제조 및 가스감도 특성 (Fabrication and Gas-Sensing Characteristics of $NO_x$ Sensors using $WO_3$ Thin Films)

  • 유광수;김태송;정형진
    • 한국세라믹학회지
    • /
    • 제32권12호
    • /
    • pp.1369-1376
    • /
    • 1995
  • The WO3 thin-film NOx sensor which is of practical use and includes the heater and the temperature sensor was fabricated. The WO3 thin films as a gas-sensing layer was deposited at ambient temperature in a high-vacuum resistance heated evaporator. The highest sensitivity of the WO3 thin-film sensor to NOx was obtained under the condition of the annealing temperature of 50$0^{\circ}C$ and the operating temperature of 30$0^{\circ}C$. The gas sensing characteristics of this sensor was excellent, i.e. high sensitivity (Rgas/Rair in 3 ppm NO2=53) and fast response time (4 seconds).

  • PDF

산화아연 나노구조 박막의 일산화탄소 가스 감지 특성 (CO Gas Sensing Characteristics of Nanostructured ZnO Thin Films)

  • 웬래훙;김효진;김도진
    • 한국재료학회지
    • /
    • 제20권5호
    • /
    • pp.235-240
    • /
    • 2010
  • We investigated the carbon monoxide (CO) gas-sensing properties of nanostructured Al-doped zinc oxide thin films deposited on self-assembled Au nanodots (ZnO/Au thin films). The Al-doped ZnO thin film was deposited onto the structure by rf sputtering, resulting in a gas-sensing element comprising a ZnO-based active layer with an embedded Pt/Ti electrode covered by the self-assembled Au nanodots. Prior to the growth of the active ZnO layer, the Au nanodots were formed via annealing a thin Au layer with a thickness of 2 nm at a moderate temperature of $500^{\circ}C$. It was found that the ZnO/Au nanostructured thin film gas sensors showed a high maximum sensitivity to CO gas at $250^{\circ}C$ and a low CO detection limit of 5 ppm in dry air. Furthermore, the ZnO/Au thin film CO gas sensors exhibited fast response and recovery behaviors. The observed excellent CO gas-sensing properties of the nanostructured ZnO/Au thin films can be ascribed to the Au nanodots, acting as both a nucleation layer for the formation of the ZnO nanostructure and a catalyst in the CO surface reaction. These results suggest that the ZnO thin films deposited on self-assembled Au nanodots are promising for practical high-performance CO gas sensors.