• Title/Summary/Keyword: Thin film evaporation

Search Result 522, Processing Time 0.022 seconds

Structural and photoelectrical properties of copper phthalocyanine(CuPc) thin film on Si substrate by thermal evaporation (Si 기판위에 열증착법으로 제조한 copper phthalocyanine(CuPc) 박막의 구조 및 광전특성)

  • Lee, Hea-Yeon;Jeong, Jung-Hyun;Lee, Jong-Kyu
    • Journal of Sensor Science and Technology
    • /
    • v.6 no.5
    • /
    • pp.407-413
    • /
    • 1997
  • The crystallized CuPc(copper phthalocyanine) film on a p-type <100> Si substrate is prepared at the substrate temperature of $300^{\circ}C$ by thermal evaporation. X -ray diffraction analysis showed the CuPc film to have a-axis oriented structure. For the measurement of photovoltaic characteristics of the CuPc/Si film and the Si substrate, a transverse current-voltage (I-V) curve is observed. In the dark, the Au/Si junction is shown to be ohmic contact. However, under illumination, a photovoltaic effect is not observed. The I-V curve in the dark indicates that the CuPc film on Si may form an ohmic contact. Since the CuPc film is a p-type semiconductor, the CuPc/p-Si junction has no barrier at the interface. Under illumination, the CuPc/Si junction shows a large photocurrent comparing with that of the wafer. The result indicates that the CuPc layer plays an important role in the photocarrier generation under red illumination (600 nm). The CuPc/Si film shows the photo voltaic characteristics with a short-circuit photocurrent ($J_{sc}$) of $4.29\;mA/cm^{2}$ and an open-circuit voltage ($V_{oc}$) of 12 mA.

  • PDF

ZnO thin films with Cu, Ga and Ag dopants prepared by ZnS oxidation in different ambient

  • Herrera, Roberto Benjamin Cortes;Kryshtab, Tetyana;Andraca Adame, Jose Alberto;Kryvko, Andriy
    • Advances in nano research
    • /
    • v.5 no.3
    • /
    • pp.193-201
    • /
    • 2017
  • ZnO, ZnO: Cu, Ga, and ZnO: Cu, Ga, Ag thin films were obtained by oxidization of ZnS and ZnS: Cu, Ga films deposited onto glass substrates by electron-beam evaporation from ZnS and ZnS: Cu, Ga targets and from ZnS: Cu, Ga film additionally doped with Ag by the closed space sublimation technique at atmospheric pressure. The film thickness was about $1{\mu}m$. The oxidation was carried out at $600-650^{\circ}C$ in air or in an atmosphere containing water vapor. Structural characteristics were investigated by X-ray diffraction (XRD) and atomic force microscopy (AFM). Photoluminescence (PL) spectra of the films were measured at 30-300 K using the excitation wavelengths of 337, 405 and 457.9 nm. As-deposited ZnS and ZnS: Cu, Ga films had cubic structure. The oxidation of the doped films in air or in water vapors led to complete ZnO phase transition. XRD and AFM studies showed that the grain sizes of oxidized films at wet annealing were larger than of the films after dry annealing. As-deposited doped and undoped ZnS thin films did not emit PL. Shape and intensity of the PL emission depended on doping and oxidation conditions. Emission intensity of the films annealed in water vapors was higher than of the films annealed in the air. PL of ZnO: Cu, Ga films excited by 337 nm wavelength exhibits UV (380 nm) and green emission (500 nm). PL spectra at 300 and 30 K excited by 457.9 and 405 nm wavelengths consisted of two bands - the green band at 500 nm and the red band at 650 nm. Location and intensities ratio depended on the preparation conditions.

The effect of $CdCl_2$ treatment on the Characteristics of $CdS{\backslash}CdTe$ solar cell ($CdCl_2$ 처리에 의한 $CdS{\backslash}CdTe$ 태양전지의 특성에 관한 연구)

  • Nam, J.H.;Lee, J.H.;Kim, J.H.;Park, Y.K.;Shin, S.H.;Kim, S.S.;Park, J.I.;Park, G.J.
    • Proceedings of the KIEE Conference
    • /
    • 1996.07c
    • /
    • pp.1418-1420
    • /
    • 1996
  • In this paper, structural properties of CdTe thin films and photovoltaic properties of thin film CdS/CdTe solar ceIl prepared by thermal vacuum evaporation were studied. Structural variation with $CdCl_2/heat$ treatment are assessed using x-ray diffraction and scanning electron microscopy. The crystal structure of CdTe films was zincblend type with preferential orientation of the (111) plane parallel to the substrate. The $CdCl_2$ treatment appears to increase the grain size of polycrystalline CdTe thin film. It was found that CdS/CdTe solar cell characteristics were improved by the heat treatment with $CdCl_2$. The conversion efficiency, however, decreased when heat treatment temperature was too high.

  • PDF

Evaluation of the fabrications and properties of ultra-thin film for memory device application (메모리소자 응용을 위한 초박막의 제작 및 특성 평가)

  • Jeong, Sang-Hyun;Choi, Haeng-Chul;Kim, Jae-Hyun;Park, Sang-Jin;Kim, Kwang-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.169-170
    • /
    • 2006
  • In this study, ultra thin films of ferroelectric vinylidene fluoride-trifluoroethylene (VF2-TrFE) copolymer were fabricated on degenerated Si (n+, $0.002\;{\Omega}{\cdot}cm$) using by spin coating method. A 1~5 wt% diluted solution of purified vinylidene fluoride-trifluoroethylene (VF2:TrFE=70:30) in a dimethylformamide (DMF) solvent were prepared and deposited on silicon wafers at a spin rate of 2000~5000rpm for 30 seconds. After annealing in a vacuum ambient at $200^{\circ}C$ for 60 min, upper gold electrodes were deposited by vacuum evaporation for electrical measurement. X-ray diffraction results showed that the VF2-TrFE films on Si substrates had $\beta$-phase of copolymer structures. The capacitance on $n^+$-Si(100) wafer showed hysteresis behavior like a butterfly shape and this result indicates clearly that the dielectric films have ferroelectric properties. The typical measured remnant polarization (2Pr) and coercive filed (EC) values measured using a computer controlled a RT-66A standardized ferroelectric test system (Radiant Technologies) were about $0.54\;C/cm^2$ and 172 kV/cm, respectively, in an applied electric field of ${\pm}0.75\;MV/cm$.

  • PDF

Solution-Processed Indium-Gallium Oxide Thin-Film Transistors for Power Electronic Applications (전력반도체 응용을 위한 용액 공정 인듐-갈륨 산화물 반도체 박막 트랜지스터의 성능과 안정성 향상 연구)

  • Se-Hyun Kim;Jeong Min Lee;Daniel Kofi Azati;Min-Kyu Kim;Yujin Jung;Kang-Jun Baeg
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.4
    • /
    • pp.400-406
    • /
    • 2024
  • Next-generation wide-bandgap semiconductors such as SiC, GaN, and Ga2O3 are being considered as potential replacements for current silicon-based power devices due to their high mobility, larger size, and production of high-quality wafers at a moderate cost. In this study, we investigate the gradual modulation of chemical composition in multi-stacked metal oxide semiconductor thin films to enhance the performance and bias stability of thin-film transistors (TFTs). It demonstrates that adjusting the Ga ratio in the indium gallium oxide (IGO) semiconductor allows for precise control over the threshold voltage and enhances device stability. Moreover, employing multiple deposition techniques addresses the inherent limitations of solution-processed amorphous oxide semiconductor TFTs by mitigating porosity induced by solvent evaporation. It is anticipated that solution-processed indium gallium oxide (IGO) semiconductors, with a Ga ratio exceeding 50%, can be utilized in the production of oxide semiconductors with wide band gaps. These materials hold promise for power electronic applications necessitating high voltage and current capabilities.

Activation Energies of Hydrogen Absorption and Desorption in Pd Thin Films for the α phase (팔라디움박막의 α 상영역 수소 활성화에너지)

  • Cho, Youngsin
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.10 no.4
    • /
    • pp.191-196
    • /
    • 1999
  • 4-probe resistivity measurement technique was used to study hydrogen A-D(Absorption-Desorption)kinetics on Pd films(18 to 67nm thick) from 25 to $50^{\circ}C$, from 0 to 5 torr hydrogen pressure. Pd films were made on sapphire substrate by thermal evaporation technique under high vacuum at room temperature. Upto about 100 hydrogen A-D cyclings, no pulverization was observed, but film was detached partially from substrate. Forward reaction and backward reaction rate were analyzed separately. The activation energies of hydrogen A-D processes were obtained from the Arrhenius plot of the reaction rates. The activation energies of Pd films are not strongly dependent on the thickness of the film. But the activation energy of very thin film( l8nm thick) was smaller than the others.

  • PDF

The influence of preparation conditions on the electrochemical degradation of tungsten oxide thin films prepared by electron beam deposition (제작조건이 전자비임으로 제작된 텅스텐산화물 박막의 전기화학적 퇴화에 미치는 영향)

  • 이길동
    • Journal of the Korean Vacuum Society
    • /
    • v.7 no.4
    • /
    • pp.306-313
    • /
    • 1998
  • The electrochromic $WO_3$thin films were prepared by using the electron-beam evaporatin technique. Flms prepared at a vacuum pressure of $10^{-4}$ mbar were found to be most stable during repeated potential cycles. The chemical stability of the film in aqueous solutions was also affected by the vacuum pressure during evaporation. The redox current and the optical properties of the degraded films were affected by the thickness of the film. The 5,000$\AA$-thick films were found to be most stable, undergoing the least degradation during the repeated coloring and bleaching cycles. The origin of the mechanism dominating the degradation during the repeated coloring and bleaching cycles was the accumulation of lithium in the film, which results in decreasing redox current. Tungsten oxide films with titanium content of about 10-15 mol% was found to be most stable, undergoing the least degradation during the repeated cycles. The origin of the mechanism dominating the least degradation during the repeated cycles was the reduction of lithium ion trapping sites in the films, which results in a increased durability.

  • PDF

The fabrication of PVDF organic thin films by thermal evaporation deposition method and their molecular orientation properties (열증착법을 이용한 PVDF 유기박막의 제조와 분자배향특성)

  • 임응춘;이덕출
    • Journal of the Korean Vacuum Society
    • /
    • v.6 no.2
    • /
    • pp.122-128
    • /
    • 1997
  • In this study, the PVDF organic thin films were fabricated by thermal evaporation deposition which is one of the dry-processing methods. The distance from heat source to substrate was 5 cm. The substrate temperature was maintained at $30 ^{\circ}C$ during deposition. The working pressure was about $2.0\times10^{-5}$Torr and the temperature of heat source was increased at the rate of 6 to $8^{\circ}C$/min. At $270^{\circ}C$, the shutter was opened and the deposition of PVDF has stared. As the electrical field intensity increased, $\alpha$ peaks such $530\textrm{cm}^{-1},795\textrm{cm}^{-1},1182\textrm{cm}^{-1}$ decreased, and $\beta$ peaks such as $510\textrm{cm}^{-1},1273\textrm{cm}^{-1}$ increased. The intensity of $530\textrm{cm}^{-1}$ peak was stronger than that of $510\textrm{cm}^{-1}$ peak velow the 71.4 kV/cm, intensity of electrical field. This result showed the characteristic of film mainly due to $\alpha$-mode. According to these results, the molecular structure of PVDF thin film is transformed from $\alpha$-mode with TGT or TG'T to $\beta$-mode with planar zigzag structure TT, as increasing of intensity of electrical field.

  • PDF

Measurement of nonlinear optical constant of organic single crystal para-toluene sulfonate prepared by slow solution evaporation method (늦은 용액증발법으로 제작한 유기단결정 para-toluene sulfonate의 비선형 광학상수 측정)

  • 황보창권
    • Korean Journal of Optics and Photonics
    • /
    • v.9 no.2
    • /
    • pp.76-85
    • /
    • 1998
  • Organic single crystal of p-toluene sulfonate(PTS) bulks and thin films were fabricated using a slow solution evaporation method. Third and fifth order nonlinear refractive indices, $n_2$and $n_3$, of PTS crystals at 1600 nm were determined by the Z-scan method and the multimode output of the PTS thin film waveguide was observed at 1350 nm. When the beam intensity is in 2-5 GW/$cm^2$, the nonlinear refractive indices are $n_{2}=6{\times}10^{-4}cm^{2}$/GW and $n_{3}=-7{\times}10^{-5}cm^{4}/GW^{2}$ and the two and three photon absorption coefficients are zero. When the beam intensity is in 5~16 GW/$cm^2$, the split-step fast Fourier transform beam propagation method simulation shows that the beam propagation in the PTS is distorted from the gaussian shape.

  • PDF

Low-voltage characteristics of E-beam evaporated MgO-CaO films as a protective layer for AC PDPs (전자빔 증착법으로 증착한 MgO-CaO 박막의 교류형 PDP 보호막 적용을 위한 저전압 특성 연구)

  • 조진희;김락환;이경우;김정열;김희재;박종완
    • Journal of the Korean Vacuum Society
    • /
    • v.8 no.1
    • /
    • pp.70-74
    • /
    • 1999
  • MgO-CaO protective layers with various composition were prepared by electron beam evaporation to improve the characteristics of conventional pure MgO thin films as a protective layer for AC-PDP. The maximum deposition rate of pure MgO was 1025 $\AA$/min and decreased with increasing [(CaO/(MgO+CaO)] ratio of evaporation starting materials. From XRD analyses, a trend of peak shift to the lower 2$\theta$ angle side was shown as CaO content increased and it stoped when the concentration of CaO was 0.13, which corresponds to the maximum solubility of CaO in MgO. The optimum composition of the protective thin films was Mg 47.1 at%, Ca 1.3 at%, O 51.6 at%, and firing voltage, memory margin and deposition rate of the film with this composition was 176 V, 0.5 and 515 $\AA$/min, respectively.

  • PDF