• Title/Summary/Keyword: Thin Film of (Ti,Cr)N

Search Result 17, Processing Time 0.021 seconds

Deposition of (Ti, Cr, Zr)N-$MoS_{2}$ Thin Films by D.C. Magnetron Sputtering

  • Kim, Sun-Kyu;Vinh, Pham-Van
    • Journal of the Korean institute of surface engineering
    • /
    • v.39 no.6
    • /
    • pp.263-267
    • /
    • 2006
  • As technology advances, there is a demand for development of hard solid lubricant coating. (Ti, Cr, Zr)N-$MoS_2$ films were deposited on AISI H13 tool steel substrate by co-deposition of $MoS_2$ with (Ti, Cr, Zr)N using a D.C. magnetron sputtering process. The influence of the $N_2Ar$ gas ratio, the amount of $MoS_2$ in the films and the bias voltage on the mechanical and structural properties of the films were investigated. The highest hardness level was observed at the $N_2/Ar$ gas ratio of 0.3. Hardness of the films did not change much with the increase of the $MoS_2$ content in the films. As the substrate bias potential was increased, hardness level of the film reached maximum at -150 V. Surface morphology of these films indicated that high hardness was attributed to the fine dome structure.

Effect of TiAIN-based Nanoscale Multilayered Coating on the Cutting Performance of WC-Co Insert (WC-CO 인써트의 절삭 성능에 미치는 TiAIN계 나노 다층막 코팅의 영향)

  • Lim Hee-Youl;Park Jong-Keuk;Kim Kyung-Bae;Choi Doo-Jin;Baik Young-Joon
    • Journal of the Korean Vacuum Society
    • /
    • v.15 no.1
    • /
    • pp.110-116
    • /
    • 2006
  • The mechanical property and cutting performance of the cutting tools coated with nanoscale nyktukatered nitride film have been investigated. $Ti_{0.54}Al_{0.46}N-CrN$ and $Ti_{0.84}Al_{0.16}N-NlN$ systems, which showed super-lattice in nanoscale multilayered coating, were deposited on WC-Co insert by UBM sputtering, The superlattice coatings with different bilayer periods were manufactured by controlling deposition parameters. The superlattice formation and hardness of the nanoscale multilayered nitride film and the cutting performance of the insert coated with the film were examined. The hardness and cutting performance were dependent on the bilayer periods of the coatings. The flank wear of the inserts with superlattice coatings were decreased over $20\%$, compared to those of commonly used cutting tools coated with TiAIN single phase.

Thermal properties of the surface-modified Inconel 617 (표면 처리에 따른 Inconel 617 합금의 고온 특성)

  • Cho, Hyun;Bang, Kwang-Hyun;Lee, Byeong-Woo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.19 no.6
    • /
    • pp.298-304
    • /
    • 2009
  • The effect of the surface treatments on the high temperature properties of the Inconel 617, one of the promising candidate alloys for high temperature heat-transport system, has been studied. Various surface modification methods including a rapid thermal process(RTP), a hydrothermal treatment, and a physical vapor deposition($2{\mu}m$ thick TiAlN film by an arc discharge) were applied to the Inconel 617. The morphological and the structural properties of the surface-modified Inconel 617 samples after heat treatment at $1000^{\circ}C$ in the air were compared to find out whether inhomogeneous formation of $Cr_2O_3$ crust at the surface region was suppressed or not. TiAlN-coated Inconel 617 showed homogeneous microstructure and the lowest wear loss compared to bare, RTP- and hydrothermally-treated Inconel 617 by suppressing the $Cr_2O_3$ crust formation.

Effectiveness of medical coating materials in decreasing friction between orthodontic brackets and archwires

  • Arici, Nursel;Akdeniz, Berat S.;Oz, Abdullah A.;Gencer, Yucel;Tarakci, Mehmet;Arici, Selim
    • The korean journal of orthodontics
    • /
    • v.51 no.4
    • /
    • pp.270-281
    • /
    • 2021
  • Objective: The aim of this in vitro study was to evaluate the changes in friction between orthodontic brackets and archwires coated with aluminum oxide (Al2O3), titanium nitride (TiN), or chromium nitride (CrN). In addition, the resistance of the coatings to intraoral conditions was evaluated. Methods: Stainless steel canine brackets, 0.016-inch round nickel-titanium archwires, and 0.019 × 0.025-inch stainless steel archwires were coated with Al2O3, TiN, and CrN using radio frequency magnetron sputtering. The coated materials were examined using scanning electron microscopy, an X-ray diffractometer, atomic force microscopy, and surface profilometry. In addition, the samples were subjected to thermal cycling and in vitro brushing tests, and the effects of the simulated intraoral conditions on the coating structure were evaluated. Results: Coating of the metal bracket as well as nickel-titanium archwire with Al2O3 reduced the coefficients of friction (CoFs) for the bracket-archwire combination (p < 0.01). When the bracket and stainless steel archwire were coated with Al2O3 and TiN, the CoFs were significantly lower (0.207 and 0.372, respectively) than that recorded when this bracket-archwire combination was left uncoated (0.552; p < 0.01). The friction, thermal, and brushing tests did not deteriorate the overall quality of the Al2O3 coatings; however, some small areas of peeling were evident for the TiN coatings, whereas comparatively larger areas of peeling were observed for the CrN coatings. Conclusions: Our findings suggest that the CoFs for metal bracket-archwire combinations used in orthodontic treatment can be decreased by coating with Al2O3 and TiN thin films.

Preparation of Nano Titania Sols and Thin Films added with Transition Metal Elements (전이금속원소들이 첨가된 나노 티타니아 졸 및 코팅막 제조)

  • Lee K.;Lee N. H.;Shin S. H.;Lee H. G.;Kim S. J.
    • Korean Journal of Materials Research
    • /
    • v.14 no.9
    • /
    • pp.634-641
    • /
    • 2004
  • The photocatalytic performance of $TiO_2$ thin films coated on porous alumina balls using various aqueous $TiOCl_2$ solutions as starting precursors, to which 1.0 $mol\%$ transition metal ($Ni^{2+},\;Cr^{3+},\;Fe^{3+},\;Nb^{3+},\;and\;V^{5+}$) chlorides had been already added, has been investigated, together with characterizations for $TiO_2$ sols synthesized simultaneously in the same autoclave through hydrothermal method. The synthesized $TiO_2$ sols were all formed with an anatase phase, and their particle size was between several nm and 30 nm showing ${\zeta}-potential$ of $-25{\sim}-35$ mV, being maintained stable for over 6 months. However, the $TiO_2$ sol added with Cr had a much lower value of -potential and larger particle sizes. The coated $TiO_2$ thin films had almost the same shape and size as those of the sol. The pure $TiO_2$ sol showed the highest optical absorption in the ultraviolet light region, and other $TiO_2$ sols containing $Cr^{3+},\;Fe^{3+}\;and\;Ni^{2+}$ showed higher optical absorption than pure sol in the visible light region. According to the experiments for removal of a gas-phase benzene, the pure $TiO_2$ film showed the highest photo dissociation rate in the ultraviolet light region, but in artificial sunlight the photo dissociation rate of $TiO_2$ coated films containing $Cr^{3+},\;Fe^{3+}\;and\;Ni^{2+}$ was measured higher together with the increase of optical absorption by doping.

Characteristics of the aluminum thisn films for the prevention of copper oxidation (구리 금속선의 산화 방지를 위한 알루미늄 박막의 산화 방지 특성)

  • 이경일;민경익;주승기;라관구;김우식
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.31A no.10
    • /
    • pp.108-113
    • /
    • 1994
  • The characteristics of the oxidation prevention layers for the copper metallization were investigated. The thin films such as Cr, TiN and Al were used as the oxidation prevention layers for copper. Ultra thin aluminum films were found to prevent the oxidation of copper up to the highest oxidation annealing temperature among the barrier layers examined in this study. It was found that oxygen did not diffuse into copper through aluminum films because of the aluminum oxide layer formed on the aluminum surface and the ultra thin aluminum film could be a good oxidation barrier layer for the copper metallization.

  • PDF

Characteristic of PECVD-$WN_x$ Thin Films Deposited on $Si_3N_4$ Substrate ($Si_3N_4$ 기판 위에 PECVD 법으로 형성한 Tungsten Nitride 박막의 특성)

  • Bae, Seong-Chan;Park, Byung-Nam;Son, Seung-Hyun;Lee, Jong-Hyun;Choi, Sie-Young
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.36D no.7
    • /
    • pp.17-25
    • /
    • 1999
  • Tungsten nitride($WN_x$) films were deposited by PECVD method on silicon nitride($WSi_3N_4$) substrate. The characteristics of $WN_x$ film were investigated with changing various processing parameters ; substrate temperature, gas flow rate, rf power, and different nitrogen sources. The nitrogen composition in $WN_x$ film varied from 0 to 45% according to the $NH_3$ and $N_2$ flow rate. The highest deposition rate of 160 nm/min was obtained for the $NH_3$ gas and relatively low deposition rate of $WN_x$ films were formed by $N_2$ gas. $WN_x$ films deposited on $WSi_3N_4$ substrate had higher deposition rate than that of TiN and Si substrates. The purity of $WN_x$ film were analyzed by AES and higher purity $WN_x$ films were deposited using $NH_3$ gas. The XRD analysis indicates a phase transition from polycrystalline tungsten(W) to amorphous tungsten nitride($WN_x$), showing improved etching profile of $WN_x$ films Thick $WN_x$ films were deposited on various substrates such as Tin, NiCr and Al and maximum thickness of $1.6 {\mu}m$ was obtained on the Al adhesion layer.

  • PDF