• 제목/요약/키워드: Thielaviopsis ethacetica

검색결과 1건 처리시간 0.014초

Characterization of Alpha Amylase Producing Thielaviopsis ethacetica and Its Raw Starch Hydrolyzing Ability on Different Agricultural Substrates

  • Dissanayaka, Dissanayaka M.S.;De Silva, Sembukuttige N.T.;Attanayaka, D.P.S.T.G.;Kurera, Mihidukulasuriya J.M.S.;Fernando, Charakrawarthige A.N.
    • 한국미생물·생명공학회지
    • /
    • 제47권3호
    • /
    • pp.412-422
    • /
    • 2019
  • The present study reports the morphological and molecular characterization of the fungal strain, CMSS06 and evaluates its raw starch hydrolyzing ability in four different agricultural substrates (rice bran, banana peel, cassava tubers, and coconut water). The potential use of each agricultural substrate to replace the expensive fermentation media was evaluated with six different fermentation media: rice bran (RB), banana peel (BP), cassava starch (CS), cassava in coconut water (CSCW), cassava in modified coconut water (CMCW), and pure Coconut water (CW). The fungal strain CMSS06 was identified as Thielaviopsis ethacetica by the analysis of the ITS sequences. The T. ethacetica alpha amylase enzyme exhibited maximum alpha amylase activity at 72 h, pH 7.0, and $40^{\circ}C$ on soluble starch. This species resulted in the highest enzyme activity (mU/ml) of 26.06, 10.89, 58.82, 14.2, and 54.67 with the RB, BP, CS, CSCW, and CMCW fermentation media, respectively. The results indicate that CS can be used as a carbon substrate and CMCW can be used to accelerate the fermentation by T. ethacetica. The enzyme was partially purified by 40-60% ammonium sulphate fraction, and it showed total enzyme activity, total protein content, specific activity, purification fold, and a recovery of 2400 mU, 30 mg, 80 mU/mg, 2.7, and 71.1%, respectively. The molecular mass of the T. ethacetica alpha amylase was estimated on SDS-PAGE, and two bands around 50 kDa and 70 kDa were identified. The present study implies that T. ethacetica can produce alpha amylase, and it can be used to hydrolyze raw starch during the fermentation processes.