• Title/Summary/Keyword: Thickness ratio effect

Search Result 1,076, Processing Time 0.027 seconds

A Fatigue Related Equation with Shape and Loading Factors Representing Effect of Thickness in Al 2024-T3 Alloy Sheet (판재 Al 2024-T3 합금재료의 두께효과를 나타내는 형상인자 및 하중인자에 의한 피로관계식)

  • Kim, Seung-Gwon;Lee, Ouk-Sub;Jang, Joo-Sup
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.1
    • /
    • pp.141-146
    • /
    • 2012
  • Aluminum alloys have been used with various thicknesses suitable for light weight of structure. It is known that the thickness effect of material is an important factor affecting fatigue crack propagation under constant fatigue stress condition. In this work, we presented the behavior of fatigue crack propagation in thin plate compared to thick plate Al 2024-T3 alloy with referred thickness effect in a correlative equation determined by the shape factor and the loading factor. We chose two factors that are used in the correlative equation with considering that the experiments were carried out under a constant fatigue stress condition. The thickness ratio of thin plate compared to thick plate and the equivalent effective stress intensity factor ratio depending on thickness were chosen as shape and loading factors. A correlative equation is utilized to determine the equivalent effective stress intensity factor range of thin plate and identify the degree of increasing phenomenon of fatigue life in thin plate compared to thick plate.

Effect of Hot Forging on the Hardness and Toughness of Ultra High Carbon Low Alloy Steel (초 고 탄소 저합금강의 경도와 인성에 미치는 열간단조의 영향)

  • Kim, Jong-Beak;Kang, Chang-Yong
    • Journal of Power System Engineering
    • /
    • v.17 no.6
    • /
    • pp.115-121
    • /
    • 2013
  • This study was carried out to investigate the effect of hot forging on the hardness and impact value of ultra high carbon low alloy steel. With increasing hot forging ratio, thickness of the network and acicular proeutectoid cementite decreased, and than were broken up into particle shapes, when the forging ratio was 80%, the network and acicular shape of the as-cast state disappeared. Interlamellar spacing and the thickness of eutectoid cementite decreased with increasing forging ratio, and were broken up into particle shapes, which then became spheroidized. With increasing hot forging ratio, hardness, tensile strength, elongation and impact value were not changed up 50%, and then hardness rapidly decreased, while impact value rapidly increased. Hardness and impact value was greatly affected by the disappeared of network and acicular shape of proeutectoid cementite, and became particle shape than thickness reduction of proeutectoid and eutectoid cementite.

Buckling Load Analysis of Spot-Welded Structures (점용접된 구조물의 좌굴하중해석)

  • 이현철;심재준;안성찬;한근조
    • Journal of Korean Port Research
    • /
    • v.14 no.1
    • /
    • pp.87-95
    • /
    • 2000
  • This stability of a plate structure is very crucial problem which results in wrinkle and buckling. In this study, the effect of the pattern of spot-welding points of the two rectangular plates on the compressive and shear buckling load is studied with respect to the thickness, aspect ratio of plates and number of welding spots. Buckling coefficient of the plate not welded was compared with that of two plates with various thickness to extract the effect of thickness. The effect of number of welding spots are studied in two directions, longitudinal and transverse directions. The conclusions obtained were that the reinforcement effect was maximized when the aspect ratio was close to 1.75 at compressive load condition and that the effect of number of welding spots in transverse direction was larger than that in longitudinal direction at shearing load condition.

  • PDF

Bucking Load Analysis of Spot-Welded Structures (점용접된 구조물의 좌굴하중해석)

  • 이현철;심재준;안성찬;한근조
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 1999.10a
    • /
    • pp.265-272
    • /
    • 1999
  • This stability of a plate structure is very crucial problem which results in wrinkle and bucking. In this study, the effect of the pattern of spot-welding points of the two rectangular plates on the compressive and shear bucking load is studied with respect to the thickness, aspect ratio of plates and number of welding spots. Buckling coefficient of the plate not welded was compared with that of two plates with various thickness to extract the effect of thickness. The effect of number of welding spots are studied in two directions, longitudinal and transverse directions. The conclusions obtained were that the reinforcement effect was maximized when the aspect ratio was close to 1.75 at compressive load condition and that the effect of number of welding spots in transverse direction was larger than that in longitudinal direction at shearing load condition.

The Study on the Effect of the Aspect Ratio and Number of Spots on the Compressive Buckling Load of two Rectangular Plates Spot-Welded by FEM (점용접된 두 사각평판의 형상비 및 용접점수가 압축좌굴하중에 미치는 영향의 유한요소해석에 의한 연구)

  • Han, Geun-Jo;Jeon, Hyung-Yong;Lee, Hyoun-Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.11
    • /
    • pp.191-196
    • /
    • 1999
  • This stability of a plate structure is very crucial problem which results in wrinkle and bucking. In this study, the effect of the pattern of spot-welding points of the two rectangular plates on the compressive buckling load is studied with respect to the thickness, aspect ratio of plates, number of welding spots. buckling coefficient of the plate not welded was compared with that of two plates with various thickness to extract the effect of thickness. The effect of number of welding spots are studied in tow directions, longitudinal and transverse directions. The conclusions obtained were that the reinforcement effect was maximized when the aspect ratio was close to 1.25 and that the effect of number of welding spots in transverse direction was large than that in longitudinal direction.

  • PDF

An Experimental Study on Flame Stability and Combustion Characteristics of Coaxial Diffusion Flame (동축분류 확산화염에서 화염안정화와 연소특성에 관한 연구)

  • 유현석;오신규
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.2
    • /
    • pp.509-518
    • /
    • 1995
  • A study for the flame stability and the combustion characteristics of coaxial diffusion flame was conducted. The fuel employed was natural gas. The experimental variables were rim thickness of fuel tube, blockage ratio of the outer diameter of fuel tube to the inner diameter of air tube, and momentum ratio of fuel to air. It was consequently found that the stability in the neighborhood of the fuel rim depended on the rim thickness, especially in the case of above 3 mm, and that the stable region of the flame extended remarkably due to the formation of recirculation zone above rim. The effect of the blockage ratio on the flame stability was found to be minor in the case of above 3 mm of rim thickness. Between the momentum ratio 2 and 3, the stable flame zone was widely established as well good combustion. With increasing the fuel-air momentum ratio, axial velocity, turbulence intensity, and Reynolds stress increased.

Analysis of Mixed Mode Delamination in Graphite/Epoxy Composite (흑연/에폭시 복합재료의 혼합모우드 층간분리 해석)

  • Yum, Y. J.;You, H.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.4
    • /
    • pp.171-178
    • /
    • 1996
  • DCB(pure mode I) and CLS(mixed mode) tests were performed to investigate the effect of fracture mode on the interlaminar fracture of composite laminate. Mode I critical strain energy release rate was found to be $133J/m^2$ from the DCB test and total strain energy release rate decreased from $1, 270J/m^2$ as thickness ratio(tl/t) varied from 0.333 to 0.667 from the crease from the CLS test. Crack length had no effect on the total strain energy release rate and load was almost constant during the crack growth of the specimen which had the specific thickness ratio. Crack initiated when the stress of the strap ply reached constant stress $42kgf/mm^2$ which was found to be independent of the thickness ratio.

  • PDF

Analysis of Tube Compression with a Mandrel by Electromagnetic Forming (맨드릴을 사용한 전자기 축관성형의 해석)

  • 정상철;최길봉;신효철
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.2
    • /
    • pp.371-379
    • /
    • 1993
  • The wrinkling in the electromagnetic tube compression with a mandrel is remarkably smaller than that of the process without it. To analyze this phenomenon, the critical forming parameters such as the ratio of the clearance to the shell radius, the ratio of the thickness to the shell radius, and the ratio of the applied pressure to the standard pressure are introduced tp consider the effect of the mandrel, in addition to those of the thickness of shell and applied loads. The amplification ratio is also used to observe the magnitude of amplification. The results obtained by 2-D finite element method show that the initial imperfection embedded in the radius of cylindrical shell is the dominant factor to determine the final shape of the tube compression, and that the amplification ratio tends to have smaller values with the smaller clearance ratio and also with the larger thickness and pressure ratios.

Nonlinear static analysis of composite cylinders with metamaterial core layer, adjustable Poisson's ratio, and non-uniform thickness

  • Eipakchi, Hamidreza;Nasrekani, Farid Mahboubi
    • Steel and Composite Structures
    • /
    • v.43 no.2
    • /
    • pp.241-256
    • /
    • 2022
  • In this article, an analytical procedure is presented for static analysis of composite cylinders with the geometrically nonlinear behavior, and non-uniform thickness profiles under different loading conditions by considering moderately large deformation. The composite cylinder includes two inner and outer isotropic layers and one honeycomb core layer with adjustable Poisson's ratio. The Mirsky-Herman theory in conjunction with the von-Karman nonlinear theory is employed to extract the governing equations which are a system of nonlinear differential equations with variable coefficients. The governing equations are solved analytically using the matched asymptotic expansion (MAE) method of the perturbation technique and the effects of moderately large deformations are studied. The presented method obtains the results with fast convergence and high accuracy even in the regions near the boundaries. Highlights: • An analytical procedure based on the matched asymptotic expansion method is proposed for the static nonlinear analysis of composite cylindrical shells with a honeycomb core layer and non-uniform thickness. • The effect of moderately large deformation has been considered in the kinematic relations by assuming the nonlinear von Karman theory. • By conducting a parametric study, the effect of the honeycomb structure on the results is studied. • By adjusting the Poisson ratio, the effect of auxetic behavior on the nonlinear results is investigated.

Investigation on Electrical Properties of TIPS Pentacene Organic Thin-film Transistors by Cr Thickness of Suspended Source/Drain

  • Kim, Kyung-Seok;Chung, Kwan-Soo;Kim, Yong-Hoon;Han, Jeong-In
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1288-1291
    • /
    • 2007
  • We investigated the effect of Cr thickness on the electrical properties of triisopropylsilyl pentacene organic thin-film transistor (OTFT) employing suspended source-drain electrode. With Cr thickness of 10 nm, the field-effect mobility, on/off ratio and subthreshold slope were $0.017\;cm^2/Vs$, $8.78\;{\times}\;10^3$ and 10 V/decade, respectively. By increasing the Cr thickness to 100 nm, the fieldeffect mobility was increased to $0.032\;cm^2/Vs$, on/off ratio to $1.12{\times}10^5$ and subthreshold slope to 1 V/decade.

  • PDF