• Title/Summary/Keyword: Thickness of Ag

Search Result 450, Processing Time 0.029 seconds

Manufacturing Techniques of a Backje Gilt-Bronze Cap from Bujang-ri Site in Seosan (서산 부장리 백제 금동관모의 제작기법 연구)

  • Chung, Kwang Yong;Lee, Su Hee;Kim, Gyongtaek
    • Korean Journal of Heritage: History & Science
    • /
    • v.39
    • /
    • pp.243-280
    • /
    • 2006
  • At the Bujang-ri Site, Seosan, South Chungcheong Province, around 220 archaeological features, including semi-subterranean houses and pits of Bronze Age and semi-subterranean houses, pits, and burials of Baekje period had been identified and investigated. In Particular, mound burials No. 5 of 13 of Baekje mound burials yielding a gilt-bronze cap along with other valuable artifacts drew international scholarly attention. The gilt-bronze cap from the mound burial No. 5 is a significant archaeological data not only in the study of Baekje archaeology but also in the study of international affairs and exchange at that time. At the time of exposure, the gilt-bronze cap was already broken into a number of pieces and seriously damaged by corrosion, and hardening and urethane foam were necessary in the process of collecting its pieces. Ahead of main conservational treatments on cap, X-ray photograph and CT(computerizes tomography) were taken in order to examine interior structure of the cap and to decide appropriate treatments. In the five layers identified in the profile of cap, a textile layer was set between a metal and a layerof bark of paper birch for avoiding direct contact of the metal and the bark of paper birch. Analyses were executed for examining textile layer and a layer of fibroid material. According to microscopic analysis, while the textile layer consisted of the simplest plain fabric with one fold among three kinds of textile structures, the layer of fibroid material was mixed with two or three kinds of fibers. A comparative analysis with standard sample using FT-IR (Fourier Transform Infrared Spectroscopy) announced that both textiles and fabrics were hemp. Analysis of kind of the paper birch resulted in barks of paper birch with 15 fold. A metallographic microscope, SEM, and WDS were used for the analysis of microscopic structures of plated metal pieces. While amalgam plating was treated as a plating method, the thickness of the plated layer, a barometer of plating technique, was ranged from $1.72{\mu}m$ to $8.67{\mu}m$. The degree of purity of gold (Au) used in plating was 98% in average, and less than 1% of silver (Ag) was included.

Experimental and analytical study of squat walls with alternative detailing

  • Leonardo M. Massone;Cristhofer N. Letelier;Cristobal F. Soto;Felipe A. Yanez;Fabian R. Rojas
    • Computers and Concrete
    • /
    • v.33 no.5
    • /
    • pp.497-507
    • /
    • 2024
  • In squat reinforced concrete walls, the displacement capacity for lateral deformation is low and the ability to resist the axial load can quickly be lost, generating collapse. This work consists of testing two squat reinforced concrete walls. One of the specimens is built with conventional detailing of reinforced concrete walls, while the second specimen is built applying an alternative design, including stirrups along the diagonal of the wall to improve its ductility. This solution differs from the detailing of beams or coupling elements that suggest building elements equivalent to columns located diagonally in the element. The dimensions of both specimens correspond to a wall with a low aspect ratio (1:1), where the height and length of the specimen are 1.4 m, with a thickness of 120 mm. The alternative wall included stirrups placed diagonally covering approximately 25% of the diagonal strut of the wall with alternative detailing. The walls were tested under a constant axial load of 0.1f'cAg and a cyclic lateral displacement was applied in the upper part of the wall. The results indicate that the lateral strength is almost identical between both specimens. On the other hand, the lateral displacement capacity increased by 25% with the alternative detailing, but it was also able to maintain the 3 complete hysteretic cycles up to a drift of 2.5%, reaching longitudinal reinforcement fracture, while the base specimen only reached the first cycle of 2% with rapid degradation due to failure of the diagonal compression strut. The alternative design also allows 46% more energy dissipation than the conventional design. A model was used to capture the global response, correctly representing the observed behavior. A parametric study with the model, varying the reinforcement amount and aspect ratio, was performed, indicating that the effectiveness of the alternative detailing can double de drift capacity for the case with a low aspect ratio (1.1) and a large longitudinal steel amount (1% in the web, 5% in the boundary), which decreases with lower amounts of longitudinal reinforcement and with the increment of aspect ratio, indicating that the alternative detailing approach is reasonable for walls with an aspect ratio up to 2, especially if the amount of longitudinal reinforcement is high.

Surface state Electrons as a 2-dimensional Electron System

  • Hasegawa, Yukio
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.156-156
    • /
    • 2000
  • Recently, the surface electronic states have attracted much attention since their standing wave patterns created around steps, defects, and adsorbates on noble metal surfaces such as Au(111), Ag(110), and Cu(111) were observed by scanning tunneling microscopy (STM). As a typical example, a striking circular pattern of "Quantum corral" observed by Crommie, Lutz, and Eigler, covers a number of text books of quantum mechanics, demonstrating a wavy nature of electrons. After the discoveries, similar standing waves patterns have been observed on other metal and demiconductor surfaces and even on a side polane of nano-tubes. With an expectation that the surface states could be utilized as one of ideal cases for studying two dimensionakl (sD) electronic system, various properties, such as mean free path / life time of the electronic states, have been characterized based on an analysis of standing wave patterns, . for the 2D electron system, electron density is one of the most importnat parameters which determines the properties on it. One advantage of conventional 2D electron system, such as the ones realized at AlGaAs/GaAs and SiO2/Si interfaces, is their controllability of the electrondensity. It can be changed and controlled by a factor of orders through an application of voltage on the gate electrode. On the other hand, changing the leectron density of the surface-state 2D electron system is not simple. On ewqy to change the electron density of the surface-state 2D electron system is not simple. One way to change the electron density is to deposit other elements on the system. it has been known that Pd(111) surface has unoccupied surface states whose energy level is just above Fermi level. Recently, we found that by depositing Pd on Cu(111) surface, occupied surface states of Cu(111) is lifted up, crossing at Fermi level around 2ML, and approaches to the intrinsic Pd surface states with a increase in thickness. Electron density occupied in the states is thus gradually reduced by Pd deposition. Park et al. also observed a change in Fermi wave number of the surface states of Cu(111) by deposition of Xe layer on it, which suggests another possible way of changing electron density. In this talk, after a brief review of recent progress in a study of standing weaves by STM, I will discuss about how the electron density can be changed and controlled and feasibility of using the surface states for a study of 2D electron system. One of the most important advantage of the surface-state 2D electron system is that one can directly and easily access to the system with a high spatial resolution by STM/AFM.y STM/AFM.

  • PDF

Rhizoctonia Blight of Azolla japonica Caused by Rhizoctonia solani (Rhizoctonia solani에 의한 큰물개구리밥(Azolla japonica) 마름병)

  • Lee, Jung-Han;Cha, Jea-Yul;Noh, Gil-Han;Han, Ki-Soo;Bae, Dong-Won;Kwon, Young-Sang;Lim, Chae-Shin;Jeong, Sung-Woo;Kwon, Jin-Hyeuk;Park, Chung-Gyoo;Kwak, Youn-Sig
    • Research in Plant Disease
    • /
    • v.17 no.3
    • /
    • pp.405-409
    • /
    • 2011
  • Azolla Lam. is a small aquatic fern with deeply bilobed leaves, which are consisted of a thick greenish, with chlorophyll, upper (dorsal) lobe and a thinner, translucent lower (ventral) lobe, without chlorophyll, submerged in the water. Azolla blight was observed at a lotus pond. Mycological characteristics of the fungus associated with Azolla blight was immediately determined as Rhizoctonia sp. by the thickness and branching of hypha at right angles at the point toward the distal end of septa, with branching hypha is constricted. The fungus produced brown mycelia and dark brown sclerotia on PDA. The optimum temperature for mycelial growth and sclerotia formation were $25^{\circ}C$ and $30^{\circ}C$, respectively. The optimum temperature for fungal infection was $30^{\circ}C$, when spray inoculated. Phylogenetic analysis of rDNA-ITS revealed that the fungus was identified as Rhizoctonia solani (AG-1 IA) closest to one causing rice sheath blight disease. This is the first report on the blight disease of Azolla caused by R. solani in Korea.

Prevention of P-i Interface Contamination Using In-situ Plasma Process in Single-chamber VHF-PECVD Process for a-Si:H Solar Cells

  • Han, Seung-Hee;Jeon, Jun-Hong;Choi, Jin-Young;Park, Won-Woong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.204-205
    • /
    • 2011
  • In thin film silicon solar cells, p-i-n structure is adopted instead of p/n junction structure as in wafer-based Si solar cells. PECVD is a most widely used thin film deposition process for a-Si:H or ${\mu}c$-Si:H solar cells. For best performance of thin film silicon solar cell, the dopant profiles at p/i and i/n interfaces need to be as sharp as possible. The sharpness of dopant profiles can easily achieved when using multi-chamber PECVD equipment, in which each layer is deposited in separate chamber. However, in a single-chamber PECVD system, doped and intrinsic layers are deposited in one plasma chamber, which inevitably impedes sharp dopant profiles at the interfaces due to the contamination from previous deposition process. The cross-contamination between layers is a serious drawback of a single-chamber PECVD system in spite of the advantage of lower initial investment cost for the equipment. In order to resolve the cross-contamination problem in single-chamber PECVD systems, flushing method of the chamber with NH3 gas or water vapor after doped layer deposition process has been used. In this study, a new plasma process to solve the cross-contamination problem in a single-chamber PECVD system was suggested. A single-chamber VHF-PECVD system was used for superstrate type p-i-n a-Si:H solar cell manufacturing on Asahi-type U FTO glass. A 80 MHz and 20 watts of pulsed RF power was applied to the parallel plate RF cathode at the frequency of 10 kHz and 80% duty ratio. A mixture gas of Ar, H2 and SiH4 was used for i-layer deposition and the deposition pressure was 0.4 Torr. For p and n layer deposition, B2H6 and PH3 was used as doping gas, respectively. The deposition temperature was $250^{\circ}C$ and the total p-i-n layer thickness was about $3500{\AA}$. In order to remove the deposited B inside of the vacuum chamber during p-layer deposition, a high pulsed RF power of about 80 W was applied right after p-layer deposition without SiH4 gas, which is followed by i-layer and n-layer deposition. Finally, Ag was deposited as top electrode. The best initial solar cell efficiency of 9.5 % for test cell area of 0.2 $cm^2$ could be achieved by applying the in-situ plasma cleaning method. The dependence on RF power and treatment time was investigated along with the SIMS analysis of the p-i interface for boron profiles.

  • PDF

Irradiation enduced In-plane magnetization in Fe/MgO/Fe/Co multilayers

  • Singh, Jitendra Pal;Lim, Weon Cheol;Song, Jonghan;Kim, Jaeyeoul;Asokan, K.;Chae, Keun Hwa
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.188.1-188.1
    • /
    • 2015
  • For present investigation Fe/MgO/Fe/Co multilayer stack is grown on Si substrate using e-beam evaporation in ultrahigh vacuum. This stack is irradiated perpendicularly by 120 MeV $Ag^{8+}$ at different fluences ranging from $1{\times}10^{11}$ to $1{\times}10^{13}ions/cm^2$ in high vacuum using 15UD Pelletron Accelerator at Inter University Accelerator Centre, New Delhi. Magnetic measurements carried out on pre and post irradiated stacks show significant changes in the shape of perpendicular hysteresis which is relevant with previous observation of re-orientation of magnetic moment along the direction of ion trajectory. However increase in plane squareness may be due to the modification of interface structure of stacks. X-ray reflectivity measurements show onset of interface roughness and interface mixing. X-ray diffraction measurements carried out using synchrotron radiation shows amorphous nature of MgO and Co layer in the stack. Peak corresponding body centered Fe [JCPDS-06-0696] is observed in X-ray diffraction pattern of pre and post irradiated stacks. Peak broadening shows granular nature of Fe layer. Estimated crystallite size is $22{\pm}1nm$ for pre-irradiated stack. Crystallite size first increases with irradiation then decreases. Structural quality of these stacks was further studied using transmission electron microscopic measurements. Thickness from these measurements are 54, 36, 23, 58 and 3 nm respectively for MgO, Fe, MgO, Fe+Co and Au layers in the stack. These measurements envisage poor crystallinity of different layers. Interfaces are not clear which indicate mixing at interface. With increase fluence mixing and diffusion was increased in the stack. X-ray absorption spectroscopic measurements carried out on these stacks show changes of Fe valence state after irradiation along with change of O(2p)-metal (3d) hybridized state. Valence state change predicts oxide formation at interface which causes enhanced in-plane magnetization.

  • PDF

Experimental study for removing silver sulfide from silver objects by Nd:YAG laser cleaning (은제품의 황화은 부식층 제거를 위한 Nd:YAG 레이저클리닝 실험 연구)

  • Lee, Hyeyoun;Cho, Namchul
    • Journal of Conservation Science
    • /
    • v.30 no.1
    • /
    • pp.95-101
    • /
    • 2014
  • Silver objects tarnish with black from reaction with sulfurous acid or hydrogen sulfide of atmospheric. Blackening of silver objects results from formation of silver sulfide($Ag_2O$) on the surface. Silver sulfide usually is usually removed by conservation treatment. There are several cleaning methods such as chemical, electrochemical and micro-abrasion cleaning, but all of them consume silver. This study investigated the safe and effective parameter of laser cleaning by test on silver coupons. Laser cleaning is a selective process for the removal of specific substances. At first, laser cleaning applied to plain silver coupons, which were not corroded, to find out the safe range of laser energy density. From results, plain silver coupons were not changed at 1064nm below $4.00J/cm^2$ and at 532nm below $2.39J/cm^2$. The corrosion layer(silver sulfide) of artifical corroded silver coupons was removed at 1064nm with $2.39J/cm^2$ by 5~10 pulses and at 532nm with $1.19J/cm^2$ by 5~10 pulses. The removal thickness of corrosion layer was about 13-25nm per a laser pulse using AES analysis. In addition, laser cleaning tested the tarnish silver rings based on the results of silver coupons. As a result of test, the black surface were clean successfully and gave luster of silver, which showed the application possibility of laser cleaning for silver objects.

Genesis of the Ogcheon Gold-silver Deposit in Republic of Korea: Ore Minerals, Fluid Inclusion and Stable Isotope Studies (옥천 금-은광상의 생성환경: 광석광물, 유체포유물 및 안정동위원소 연구)

  • Yoo, Bong Chul
    • Economic and Environmental Geology
    • /
    • v.46 no.2
    • /
    • pp.153-163
    • /
    • 2013
  • The Ogcheon Au-Ag deposit consists of two quartz veins that fill the NE or NW-trending fissures in the metasedimentary rocks of unknown age. The quartz veins occur mainly in the massive type with partially breccia and cavity. They can be found along the strike for about minimum 50 m and varied in thickness from 0.1 to 0.3 m. The mineralogy of quartz veins from the Ogcheon deposit is mainly composed of hydrothermal alteration minerals such as pyrite, quartz, sericite, chlorite, clay minerals and sulfides including pyrite, pyrrhotite, arsenopyrite, sphalerite, chalcopyrite and galena. Fluid inclusion data from quartz indicate that homogenization temperatures and salinity of mineralization range from 184 to $362^{\circ}C$ and from 0.0 to 6.6 wt.% eq. NaCl, respectively. These suggest that ore forming fluids were progressively cooled and diluted from mixing with meteoric water. Sulfur(${\delta}^{34}S$: 0.4~8.4‰) isotope composition indicates that ore sulfur was derived from mainly magmatic source although there is a partial derivation from the host rocks. The calculated oxygen(${\delta}^{18}O$: 4.9~12.1‰) and hydrogen(${\delta}D$: -92~-74‰) isotope compositions suggest that magmatic and meteoric ore fluids were equally important for the formation of the Ogcheon deposit and then overlapped to some degree with another type of meteoric water during mineralization.

Effects of the Thickness and the Morphology of a ZnO Buffer Layer in Inverted Organic Solar Cells

  • Lee, Hyeon-U;O, Jin-Yeong;Baek, Hong-Gu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.151-151
    • /
    • 2013
  • 무기물 기반, Si-based 태양전지에 비해 가볍고 저렴하다는 관점에서 유기태양전지에 대한 연구가 진행되고 있다. 유기태양전지는 Si-based 태양전지에 비해 그 효율이 낮다는 점이 문제로 제기되어 왔지만, 억셉터와 도너의 nanocomposite 구조인 bulk-heterojunction (BHJ) 구조가 개발이 되면서 유기물의 짧은 엑시톤(exciton) 거리를 극복할 수 있게 되어 그 효율이 비약적으로 증가되는 결과를 낳았다. 또한 넓은 범위의 파장을 흡수 할 수 있는 작은 band-gap을 갖는 물질이 개발됨으로써 유기 태양전지의 효율은 점차 증가하고 있다. 최근에는 독일 회사인 Heliatek에서 12%가 넘는 유기태양전지를 발표함으로써 유기태양전지가 Si-based 태양전지를 대체할 수 있는 차세대 에너지 공급원으로의 가능성을 충분히 보였다. 이런 유기 태양전지는 하부 투명전극인 인듐주석산화물(ITO)/정공이동층(PEDOT:PSS)/광흡수층/전자이동층(LiF)/낮은 일함수를 갖는 상부전극인 Al 구조의 일반적인 구조; ITO/전자이동층/광흡수층/정공이동층/높은 일함수를 갖는 상부전극(Ag), 전하의 이동방향이 반대인 역구조 태양전지, 두 가지로 분류할 수 있다. 하지만 소자 안정성의 관점에서 일반적인 구조의 태양전지는 ITO/PEDOT:PSS 계면에서의 화학적 불안정성과, 낮을 일함수를 갖는 상부전극이 쉽게 산화되는 등의 문제가 있어 상부전극으로 높은 일함수를 갖는 전극을 사용하는 역구조 태양전지가 더 유리하다. 이러한 역구조 태양전지에서 효율을 높일 수 있는 요인 중 하나는 전자이동층에 있다. 광흡수층에서 형성되어 분리된 전자가 전극으로 이동하기위해서는 전자이동층을 거쳐야 한다. 하지만 이 전자이동층 내에서의 전자 이동속도가 느리다면, 즉 저항이 크다면 광흡수증과의 계면에서 Back electron trasnfer현상으로 재결합이 일어나게 되어 전극으로 도달하는 전자의 양이 줄어들게 되고, 이는 유기태양전지 효율을 낮추는 요인이 된다. 전자이동층 자체의 저항뿐만 아니라, 전자이동층의 표면 거칠기(morphology) 또한 유기 태양전지의 효율을 좌우하는 요인 중 하나이다. 광흡수층과 전자이동층의 계면에서 전자의 이동이 일어나는데, 전자이동층의 표면 거칠기가 크게되면 그 위에 박막으로 형성되는 광흡수층과의 계면저항이 증가하게 되고, 이는 광흡수층에서 전자이동층으로의 원활한 전자이동을 저해함으로써 소자 효율의 감소를 일으키게 된다. 따라서 우리는 전자이동층인 ZnO 박막의 스퍼터링 조건을 변화시킴으로써 ZnO 층의 두께에 따른 광투과도, 전기전도성 변화 및 유기태양전지의 효율변화와, 표면 거칠기에 따른 광변환 효율 변화를 관찰하고자 한다.

  • PDF

Carbon nanotube field emission display

  • Chil, Won-Bong;Kim, Jong-Min
    • Electrical & Electronic Materials
    • /
    • v.12 no.7
    • /
    • pp.7-11
    • /
    • 1999
  • Fully sealed field emission display in size of 4.5 inch has been fabricated using single-wall carbon nanotubes-organic vehicle com-posite. The fabricated display were fully scalable at low temperature below 415$^{\circ}C$ and CNTs were vertically aligned using paste squeeze and surface rubbing techniques. The turn-on fields of 1V/${\mu}{\textrm}{m}$ and field emis-sion current of 1.5mA at 3V/${\mu}{\textrm}{m}$ (J=90${\mu}{\textrm}{m}$/$\textrm{cm}^2$)were observed. Brightness of 1800cd/$m^2$ at 3.7V/${\mu}{\textrm}{m}$ was observed on the entire area of 4.5-inch panel from the green phosphor-ITO glass. The fluctuation of the current was found to be about 7% over a 4.5-inch cath-ode area. This reliable result enables us to produce large area full-color flat panel dis-play in the near future. Carbon nanotubes (CNTs) have attracted much attention because of their unique elec-trical properties and their potential applica-tions [1, 2]. Large aspect ratio of CNTs together with high chemical stability. ther-mal conductivity, and high mechanical strength are advantageous for applications to the field emitter [3]. Several results have been reported on the field emissions from multi-walled nanotubes (MWNTs) and single-walled nanotubes (SWNTs) grown from arc discharge [4, 5]. De Heer et al. have reported the field emission from nan-otubes aligned by the suspension-filtering method. This approach is too difficult to be fully adopted in integration process. Recently, there have been efforts to make applications to field emission devices using nanotubes. Saito et al. demonstrated a car-bon nanotube-based lamp, which was oper-ated at high voltage (10KV) [8]. Aproto-type diode structure was tested by the size of 100mm $\times$ 10mm in vacuum chamber [9]. the difficulties arise from the arrangement of vertically aligned nanotubes after the growth. Recently vertically aligned carbon nanotubes have been synthesized using plasma-enhanced chemical vapor deposition(CVD) [6, 7]. Yet, control of a large area synthesis is still not easily accessible with such approaches. Here we report integra-tion processes of fully sealed 4.5-inch CNT-field emission displays (FEDs). Low turn-on voltage with high brightness, and stabili-ty clearly demonstrate the potential applica-bility of carbon nanotubes to full color dis-plays in near future. For flat panel display in a large area, car-bon nanotubes-based field emitters were fabricated by using nanotubes-organic vehi-cles. The purified SWNTs, which were syn-thesized by dc arc discharge, were dispersed in iso propyl alcohol, and then mixed with on organic binder. The paste of well-dis-persed carbon nanotubes was squeezed onto the metal-patterned sodalime glass throuhg the metal mesh of 20${\mu}{\textrm}{m}$ in size and subse-quently heat-treated in order to remove the organic binder. The insulating spacers in thickness of 200${\mu}{\textrm}{m}$ are inserted between the lower and upper glasses. The Y\ulcornerO\ulcornerS:Eu, ZnS:Cu, Al, and ZnS:Ag, Cl, phosphors are electrically deposited on the upper glass for red, green, and blue colors, respectively. The typical sizes of each phosphor are 2~3 micron. The assembled structure was sealed in an atmosphere of highly purified Ar gas by means of a glass frit. The display plate was evacuated down to the pressure level of 1$\times$10\ulcorner Torr. Three non-evaporable getters of Ti-Zr-V-Fe were activated during the final heat-exhausting procedure. Finally, the active area of 4.5-inch panel with fully sealed carbon nanotubes was pro-duced. Emission currents were character-ized by the DC-mode and pulse-modulating mode at the voltage up to 800 volts. The brightness of field emission was measured by the Luminance calorimeter (BM-7, Topcon).

  • PDF