• Title/Summary/Keyword: Thickness change

Search Result 2,328, Processing Time 0.027 seconds

An Experimental Study on the Replication Ratio of Micro Patterns considering the Thickness Change of Injection Molded Parts (사출성형품의 두께변화에 따른 마이크로 패턴의 전사율에 관한 실험적 연구)

  • Jeong, C.;Kim, J.D.;Kim, J.S.;Yoon, K.H.;Hwang, C.J.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.176-179
    • /
    • 2009
  • Injection molding is one of the most general manufacturing processes of polymers. The deformation of final molded parts occurs because of the change of temperature and pressure during injection molding process. The deformation of injection molded parts depends on many operational conditions, such as, melt temperature, injection speed, mold temperature, packing pressure, and the structure of mold. In the present paper, injection molding experiments were performed to find the process conditions to affect the average shrinkage in thickness direction and the replication ratio of fine patterns on the surface for the final injection-molded LGP samples. As a results, in the cases of PC(Polycarbonate), when the melt temperature was under $285^{\circ}C$, both average shrinkage and replication ratios were mainly influenced by packing pressure. However, the replication ratio was more influenced by melt temperature than packing pressure for the cases of higher melt temperature.

  • PDF

Effect of wet/dry transition on the atmospheric corrosion of Zn (아연의 대기부식에 미치는 주기적 침적/건조 효과)

  • Kim, Ki-Tae
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 1998.05a
    • /
    • pp.3-3
    • /
    • 1998
  • The atmospheric corrosIOn properties of Zinc (Zn) under wet/dry transition of $H_20$ film were investigated in this study. The atmospheric corrosion of metal is usually occurred as a result of repetitious thickness transition (so called wet/dry transition) of liquid phase which is covering the metal surface. Corrosion potential and the polarization behaviour of Zn during liquid film thickness transition were measured by Kelvin probe method which IS using vibrating reference electrode without touching the liquid film. The oxidized states of Zn as a result of successive wet/dry transition were also investigated by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The results show that the corrosion potential and the corrosIOn rate of Zn both are increasing during drying. However, the corrOSIon rate is decreasing again when the Zn surface is completely dried while the corrosion potential still remains high. This behaviour can be explained by the polarization behaviour change of Zn according to the $H_20$ film thickness change. The completely dried surface is consisted mostly with Zn and ZnO phases. After a number of cycles of wet/dry transition, however, the oxidized Zn phase of ${\varepsilon}-Zn(OH)_2$, which has rather voluminous and defected structure, were found.

  • PDF

The Drawbility Estimation in Warm and Rot Sheet Forming Process of Magnesium for Substitution of Die-casting Process (다이캐스팅 공정의 대체를 위한 마그네슘판재의 온간, 열간 ???K드로잉 성형성 평가)

  • Choo D. K.;Oh S. W.;Lee J. H.;Kang C. G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.407-410
    • /
    • 2005
  • The drawability of AZ31B magnesium sheet is estimated according to the variable temperatures (200, 250, 300, 350 and $400^{\circ}C$), forming speed (20, 50, 100 mm/min), thickness (0.8, 1.4 t), blank holding force (1.0, 1.4, 1.7kN). The deep drawing process (DDP) of circular cup is used in forming experiments. The results of deep drawing experiences show that the drawability is well at the range from 250 to $300^{\circ}C$, 50mm/min forming speed and 1.4kN blank holding force. The 0.8t magnesium sheets were deformed better than 1.4t. BHF was controlled in order to improve drawability and protect the change of cup thickness. When BHF was controlled, tearing and thickness change were decreased and LDR. was improved from 2.1 to 3.0.

  • PDF

Elimination of Roll Interference by Increasing Radius of Variable Section Forming Roll (가변 단면 성형 롤의 반경 증가에 의한 롤 간섭 제거)

  • Kim, Kwang-Heui;Yoon, Moon-Chul;Kwak, Jae-Seob
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.2
    • /
    • pp.39-45
    • /
    • 2022
  • In this study, we investigated whether the interference occurring in forming roll surfaces could be eliminated by increasing the radius of the variable section forming rolls. The surfaces of the rolls capable of forming products with different flange heights and bend angles with the bend line tilted at an angle of 1° from the longitudinal axis were created using the general CAD software CATIA. Roll interferences were determined for the change in the forming roll radius. The minimum gaps between the upper and lower roll surfaces were measured for the change in the forming roll radius, and the roll interferences were calculated from the difference between the measured value and the thickness of the product. It was observed that the thickness of the product had a slight effect on the roll interference when the thickness was between 0.8 and 1.2 mm. It was also observed that the roll interference could be eliminated by increasing the roll radius.

Investigation of the effect of bolt diameter and end plate thickness change on bolt column-beam connection

  • Samet Oguzhan Dogan;Senol Gursoy;Ramazan Ozmen
    • Structural Engineering and Mechanics
    • /
    • v.89 no.2
    • /
    • pp.155-170
    • /
    • 2024
  • Several types of column-beam connections are used in the design of steel structures. This situation causes different cross-section effects and, therefore, different displacements and deformations. In other words, connection elements such as welds, bolts, continuity plates, end plates, and stiffness plates used in steel column-beam connections directly affect the section effects. This matter reveals the necessity of knowing the steel column-beam connection behaviours. In this article, behaviours of bolted column-beam connection with end plate widely used in steel structures are investigated comparatively the effects of the stiffness plates added to the beam body, the change in the end plate thickness and bolt diameter. The results obtained reveal that the moment and force carrying capacity of the said connection increases with the increase in the end plate thickness and bolt diameter. In contrast, it causes the other elements to deform and lose their capacity. This matter shows that optimum dimensions are very important in steel column-beam connections. In addition, it has been seen that adding a stiffness plate to the beam body part positively contributes to the connection's moment-carrying capacity.

An Experimental Study of the Nozzle Lip Thickness Effect on Supersonic Jet Screech Tones

  • Aoki Toshiyuki;Kweon Yong-Hun;Miyazato Yoshiaki;Kim Heuy-Dong;Setoguchi Toshiaki
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.522-532
    • /
    • 2006
  • It is well known that screech tones of supersonic jet are generated by a feedback loop driven by the instability waves. Near the nozzle lip where the supersonic jet mixing layer is receptive to external excitation, acoustic disturbances impinging on this area excite the instability waves. This fact implies that the nozzle lip thickness can influence the screech tones of supersonic jet. The objective of the present study is to experimentally investigate the effect of nozzle-lip thickness on screech tones of supersonic jets issuing from a convergent-divergent nozzle. A baffle plate was installed at the nozzle exit to change the nozzle-lip thickness. Detailed acoustic measurement and flow visualization were made to specify the screech tones. The results obtained obviously show that nozzle-lip thickness significantly affects the screech tones of supersonic jet, strongly depending on whether the jet at the nozzle exit is over-expanded or under-expanded.

Effects of the Inlet Boundary Layer Thickness and the Boundary Layer Fence on the Heat Transfer Chracteristics in a Turbine Cascade (입구경계층 두께와 경계층 펜스가 터빈 캐스케이드내 열전달 특서에 미치는 영향)

  • Jeong, J.S.;Chung, J.T.
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.765-770
    • /
    • 2001
  • The objective of the present study is to investigate the effects of the various inlet boundary layer thickness on convective heat transfer distribution in a turbine cascade endwall and blade suction surface. In addition, the proper height of the boundary layer fences for various inlet boundary layer thickness were applied to turbine cascade endwall in order to reduce the secondary flow, and to verify its influence on the heat transfer process within the turbine cascade. Convective heat transfer distributions on the experimental regions were measured by the image processing system. The results show that heat transfer coefficients on the blade suction surface were increased with an augmentation of inlet boundary layer thickness. However, in a turbine cascade endwall, magnitude of heat transfer coefficients did not change with variation of inlet boundary layer thickness. The results also present that the boundary layer fence is effective in reducing heat transfer on the suction surface. On the other hand, in the endwall region, boundary layer fence brought about the subsidiary heat transfer increment.

  • PDF

Development of Tomograph Technique for Evaluating Thickness Reduction using Noncontact Ultrasonic Sensor Network (두께감육 평가를 위한 비접촉식 초음파 센서 네트워크를 이용한 토모그래프 기술 개발)

  • Lee, J.M.;Kim, Y.K.;Park, I.K.
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.1
    • /
    • pp.27-31
    • /
    • 2014
  • This paper describes a tomographic imaging technique for evaluating the thickness reduction of a plate-like structure using a noncontact sensor network based on an electromagnetic acoustic transducer that generates shear horizontal plate waves. Because this technique is based on the effect of mode cutoff and time of flight of guided waves caused by a change in thickness, the tomographic image provides information on the presence of defects in the structure. To verify the performance of the method, artificial defects with various thickness reduction ratios were machined in an aluminum plate, and the tomographic imaging results are reported. The results show that the generated tomographic image displays the thickness reductions and can identify their locations. Therefore, the proposed technique has good potential as a tool for health monitoring of the integrity of plate-like structures.

Morphology and Electrical Properties of Back Electrode for Solar Cell Depending on the Mo : Na/Mo Bilayer Thickness (Mo : Na/Mo 이중층 구조 두께에 따른 태양전지 후면전극의 조직 및 전기적 특성)

  • Shin, Younhak;Kim, Myunghan
    • Korean Journal of Materials Research
    • /
    • v.23 no.9
    • /
    • pp.495-500
    • /
    • 2013
  • Mo-based thin films are frequently used as back electrode materials because of their low resistivity and high crystallinity in CIGS chalcopyrite solar cells. Mo:Na/Mo bilayer thin films with $1{\mu}m$ thickness were deposited on soda lime glass by varying the thickness of each layer using dc-magnetron sputtering. The effects of the Mo:Na layer on morphology and electrical property in terms of resistivity were systematically investigated. The resistivity increased from $159{\mu}{\Omega}cm$ to $944{\mu}{\Omega}cm$; this seemed to be caused by increased surface defects and low crystallinity as the thickness of Mo:Na layer increased from 100 nm to 500 nm. The surface morphologies of the Mo thin films changed from a somewhat coarse fibrous structures to irregular and fine celled structures with increased surface cracks along the cell boundaries as the thickness of Mo:Na layer increased. Na contents varied drastically from 0.03 % to 0.52 % according to the variation of Mo:Na layer thickness. The change in Na content may be ascribed to changes in surface morphology and crystallinity of the thin films.

The electrical conduction characteristics of the multi-dielectric silicon layer (실리콘 다층절연막의 전기전도 특성)

  • 정윤해;한원열;박영걸
    • Electrical & Electronic Materials
    • /
    • v.7 no.2
    • /
    • pp.145-151
    • /
    • 1994
  • The multi-dielectric layer SiOz/Si3N4/SiO2(ONO) is used to scale down the memory device. In this paper, the change of composition in ONO layer due to the process condition and the conduction mechanism are observed. The composition of the oxide film grown through the oxidation of nitride film is analyzed using auger electron spectroscopy(AES). AES results show that oxygen concentration increases at the interface between oxide and nitride layers as the thickness -of the top oxide layer increases. Results of I-V measurement show that the insulating properties improve as the thickness of the top oxide layer increases. But when the thickness of the nitride layer decreases below 63.angs, insulating peoperties of film 28.angs. of top oxide and film 35.angs. turn over showing that insulating property of film 28.angs. of top oxide is better than that of film 35.angs. of top oxide. This phenomenon of turn over is thought as the result of generation of surface state due to oxygen flow into nitride during oxidation process. As the thickness of the top oxide and nitride increases, the electrical breakdown field increases, but when the thickness of top oxide reaches 35.angs, the same phenomenon of turn over occurs. Optimum film thickness for scaled multi-layer dielectric of memory device SONOS is estimated to be 63.angs. of nitride layer and 28.angs. of top oxide layer. In this case, maximum electrical breakdown field and leakage current are 18.5[MV/cm] and $8{\times}{10^-12}$[A], respectively.

  • PDF