• Title/Summary/Keyword: Thick-walled light guide

Search Result 2, Processing Time 0.017 seconds

A study on CAE and injection molding of automotive thick-walled light guide with micro-optical patterns (마이크로 광학 패턴이 있는 차량용 후육 라이트 가이드의 CAE 및 사출성형에 관한 기초연구)

  • Dong-Won Lee;Jong-Su Kim;Hyeon-Hwa Lee;Sung-Hee Lee
    • Design & Manufacturing
    • /
    • v.17 no.3
    • /
    • pp.8-14
    • /
    • 2023
  • In this study, basic research was conducted on manufacturing technology of thick-walled light guide a component that controls the light source of automobile lamps. As a preliminary study for manufacturing the final injection molded parts, a model for analyzing the influence of micro patterns on light guides is presented. The optical characteristics of the light guide were analyzed according to the change of the curvature radius of the micro-optical pattern, and the injection molding characteristics of the light guide according to the change of injection molding conditions were analytically evaluated. It was confirmed that the luminance uniformity improves as the R value decreases for changes in the micro-pattern R value, but it was confirmed that there are technical limitations in actual injection mold core processing and high-replication injection molding. Injection molding analysis showed that cooling channel design is very important compared to general injection molding due to thick-wall characteristics and thickness variation. It was also confirmed that the cooling channel has a great influence on the cycle time and birefringence result due to residual stress. As a result of analyzing the influence of filling time, holding condition, and cooling on shrinkage, it was found that the cooling water temperature has a significant effect on the shrinkage of ultra-fine light guide parts, and the holding condition also has a significant effect.

Study of injection molded pattern transferability of double-sided micro-patterned automotive thick light guides (양면 마이크로 패턴 차량용 후육 라이트 가이드의 사출성형 패턴 전사성에 관한 연구)

  • Dong-won Lee;Sang-Yoon Kim;Ji-Woo Kim;Jong-Su Kim;Sung-Hee Lee
    • Design & Manufacturing
    • /
    • v.17 no.4
    • /
    • pp.42-51
    • /
    • 2023
  • In this study, we investigated the injection molding technology of thick-walled light guides, which are parts that control the light source of automotive lamps. Through injection molding analysis, the gate position that can minimize product shrinkage and deformation was selected, and a mold reflecting the analysis results was manufactured to evaluate the effect of injection speed and holding pressure on transferability during micro-pattern molding through experiments. When designing an injection mold for products with varying thicknesses, it was found that installing the gate on the side of the thicker part was advantageous for reducing volume shrinkage and deformation. It was found that the effect of shrinkage due to thickness may be greater than the position of the gate on pattern transferability. The pattern transfer error decreased as the injection speed and holding pressure increased, and it was found that increasing the injection speed was relatively effective.