• Title/Summary/Keyword: Thick-wall pipe

Search Result 15, Processing Time 0.025 seconds

An Improved Pipe Hoop Stress Formula

  • Lee, Jaeyoung
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.76-82
    • /
    • 2001
  • The ASME B3l.4〔1〕and B3l.8 〔2〕codes use the thin wall formula to predict hoop stress in a pipe. To account for the external pressure, the above codes simply subtract the external pressure from the internal pressure. The thin wall formula using this differential pressure does not give the same hoop stress as the thick wall formula. This paper proposes an improved equation to predict pipe hoop stress subjected to both internal and external pressure. Compared to the conventional thin wall formula, the improved formula has additional terms, which improve the agreement with the thick wall formula and account for external pressure. The improved formula is less conservative than the conventional thin wall formula, but slightly more conservative than the thick wall formula. The formula is simpler and easier to use than the thick wall formula and will save pipe material cost as well as installation cost compared to using the conventional thin wall formula. The savings will increase as the water depth increases.

  • PDF

Evaluation of HIC Resistance for Thick-wall Welded Pipe (후육 용접 강관의 HIC 저항성 평가)

  • Seo Jun Seok;Kim Hee Jin;Ryoo Hoi-Soo
    • Journal of Welding and Joining
    • /
    • v.23 no.3
    • /
    • pp.34-39
    • /
    • 2005
  • It is required for the steel materials used in the sour environment to have sufficient resistance to hydrogen induced cracking(HIC). For line pipe steels, HIC resistance could be varied during pipe making process due to the large plastic deformation applied in the thick-wall pipe. In order to figure out such effect, HIC tests were performed not only in the plate condition but in the pipe condition and their results were compared in terms of cracking ratio. Test results demonstrated a detrimental effect of plastic deformation to HIC resulting in a substantial increase in the cracking ratio after pipe forming process. All of the cracks found in the pipe material were located in the outer layer of pipe where the tensile strain was resulted during pipe forming stage. In order to understand the HIC resistance of the pipe but in the plate condition, it was suggested to pre-strain the plate to some extent before the HIC test.

Estimates of Elastic Fracture Mechanics Parameters for Thick-Walled Pipes with Slanted Axial Through-Wall Cracks (두꺼운 배관에 존재하는 축방향 경사관통균열의 탄성파괴역학 매개변수 계산)

  • Han, Tae-Song;Huh, Nam-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.12
    • /
    • pp.1521-1528
    • /
    • 2012
  • The present paper provides the elastic stress intensity factors (SIFs) and the crack opening displacements (CODs) of a thick-walled pipe with a slanted axial through-wall crack. For estimating these elastic fracture mechanics parameters, systematic three-dimensional elastic finite element (FE) analyses were performed by considering geometric variables, i.e., thickness of pipe, reference crack length, and crack length ratio, affecting the SIFs and CODs. As for loading condition, the internal pressure was considered. Based on the FE results, the SIFs and CODs of slanted axial through-wall cracks in a thickwalled pipe along the crack front and the wall thickness were calculated. In particular, to calculate the SIFs of a thick-walled pipe with a slanted axial through-wall crack from those of a thick-walled pipe with an idealized axial through-wall crack, a slant correction factor representing the effect of the slant crack on the SIFs was proposed.

Numerical Analysis of Conjugate Heat Transfer in a Curved Piping System Subjected to Internal Stratified Laminar Flow (층류 열성층유동 곡관에 대한 복합열전달 수치해석)

  • Jo Jong Chull;Choi Hoon-Ki
    • Journal of computational fluids engineering
    • /
    • v.7 no.3
    • /
    • pp.35-43
    • /
    • 2002
  • This paper addresses a numerical method for predicting transient temperature distributions in the wall of a curved pipe subjected to internal laminar thermally-stratified flow. A simple and convenient numerical method of treating the unsteady conjugate heat transfer in non-orthogonal coordinate systems is presented. Numerical calculations are performed for the transient evolution of thermal stratification in two curved pipes, where one has thick wall and the other has so thin wall that its presence can be negligible in the heat transfer analysis. The predicted results show that the thermally stratified flow and transient conjugate heat transfer in a curved pipe with a finite wall thickness can be satisfactorily analyzed by the present numerical method, and that the neglect of wall thickness in the prediction of pipe wall temperature distributions can provide unacceptably distorted results for the cases of pipes with thick wall such as safety related-piping systems of nuclear power plant.

Prediction of Transient Temperature Distributions in the Wall of Curved Piping System Subjected to Internally Thermal Stratification Flow (열성층유동 곡관벽에서의 과도온도분포 예측)

  • Jo, J.C.;Cho, S.J.;Kim, Y.I.;Park, J.Y.;Kim, S.J.;Choi, S.K.
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.474-481
    • /
    • 2001
  • This paper addresses a numerical method for predicting transient temperature distributions in the wall of a curved pipe subjected to internally thermal stratification flow. A simple and convenient numerical method of treating the unsteady conjugate heat transfer in the non-orthogonal coordinate systems is presented. The proposed method is implemented in a finite volume thermal-hydraulic computer code based on a cell-centered, non-staggered grid arrangement, the SIMPLEC algorithm, a higher-order bounded convection scheme, and the modified version of momentum interpolation method. Calculations are performed for the transient evolution of thermal stratification in two curved pipes, where the one has thick wall and the other has so thin wall that its presence can be negligible in the heat transfer analysis. The predicted results show that the thermally stratified flow and transient conjugate heat transfer in a curved pipe with a finite wall thickness can be satisfactorily analyzed by the present numerical method, and that the neglect of wall thickness in the prediction of pipe wall temperature distributions can provide unacceptably distorted results.

  • PDF

New Plastic Limit Load Equations of Pipes with Inner and Outer Circumferential Surface Cracks Considering Thickness Effect (내부 및 외부 원주방향 표면균열이 존재하는 배관의 두께효과를 고려한 소성한계하중 계산식 제시)

  • Kim, Yeon-Soo;Huh, Nam-Su
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.15 no.2
    • /
    • pp.71-80
    • /
    • 2019
  • In this study, limit load equations of thick-walled pipes with inner and outer circumferential surface cracks were derived based on force and moment equilibrium conditions. Since the limit load equations based on the mean radius at uncracked ligament, previously proposed by Kanninen et al., are based on the premise that the pipe wall thickness is relatively thin, the existing limit load solutions are only applicable to thin-walled pipes. In order to analyze the effect of the pipe thickness and surface crack depth on the limit load results, the predictions using the present limit load equations are compared with those using the existing solutions for thin-walled pipes. Being derived considering the thickness effect, the limit load solutions from this paper are believed to be more accurate for thick-walled pipes than the limit load equations presented for thin-walled pipes, and thus to be valuable equations for integrity assessment of thick-walled pipes.

Nondestructive evaluation of wall thinning covered with insulation using pulsed eddy current (펄스와전류를 이용한 보온재 비해체식 배관감육 평가기술)

  • Park, Duck-Gun;Babu, M.K.;Lee, Duk-Hyun
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.10 no.1
    • /
    • pp.90-95
    • /
    • 2014
  • Local wall thinning is a point of concern in almost all steel structures such as pipe lines covered with a thermal insulator made up of materials with low thermal conductivity(fiberglass or mineral wool); hence, Non Destructive Technique(NDT) methods that are capable of detecting the wall thinning and defects without removing the insulation are necessary. In this study we developed a Pulsed Eddy Current(PEC) system to detect the wall thinning of Ferro magnetic steel pipes covered with fiber glass thermal insulator and shielded with Aluminum plate. The developed system is capable of detecting the wall thickness change through an insulation of thickness 10cm and 0.4mm aluminum shielding. In order to confirm the thickness change due to wall thinning, two different sensors, a hall sensor and coil sensor were used as a detecting element. In both cases, the results show a very good change corresponding to the thickness change of the test specimen. During these experiments a carbon steel tube of diameter 210mm and a length of 620mm, which is covered with insulator of 95mm thickness was used. To simulate the wall thinning, the thickness of the tube is changed for a specified length such as 2.5mm, 5mm and 8 mm from the inner surface of the tube. A 0.4mm thick Aluminum plate was covered on the Test specimen to simulate the shielding of the insulated pipelines. For both hall sensor and coil detection methods Fast Fourier transform(FFT) was calculated using window approach and the results for the test specimen without Aluminum shielding were summarized which shows a clear identification of thickness change in the test specimen by comparing the magnitude spectra. The PEC system can detect the wall thinning under the 95 mm thickness insulation and 0.4 mm Al shielding, and the output signal showed linear relation with tube wall thickness.

Detection of Corrosion and Wall Thinning in Carbon Steel Pipe Covered With Insulation Using Pulsed Eddy Current

  • Park, Duck-Gun;Kishore, M.B.;Kim, J.Y.;Jacobs, L.J.;Lee, D.H.
    • Journal of Magnetics
    • /
    • v.21 no.1
    • /
    • pp.57-60
    • /
    • 2016
  • Non Destructive Testing (NDT) methods that are capable of detecting the wall thinning and defects through insulation and cladding sheets are necessary. In this study we developed a Pulsed Eddy Current (PEC) system to detect wall thinning of ferro magnetic steel pipes covered with 95 mm thick fiber glass thermal insulator and shielded with aluminum plate of thickness 0.4 mm. In order to confirm the thickness change due to wall thinning, two different sensors, a hall sensor and a search coil sensor were used as a detecting element. In both the cases, the experimental data indicates a considerable change in the detected pulse corresponding to the change in sample thickness. The thickness of the tube was made to change such as 2.5 mm, 5 mm and 8 mm from the inner surface to simulate wall thinning. Fast Fourier Transform (FFT) was calculated using window approach and the results were summarized which shows a clear identification of thickness change in the test specimen by comparing the magnitude spectra.