• Title/Summary/Keyword: Thick plates

Search Result 387, Processing Time 0.027 seconds

Analysis of Angular Deformation in Multi-pass Butt Joint Welding of Thick Plates with X-shape Grooves using the Finite Element Method (X형 개선을 가진 후판 맞대기 용접에 있어서 유한요소법을 이용한 각변형 해석)

  • Yang, Young-Soo;Bae, Kang-Yul
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.4
    • /
    • pp.169-176
    • /
    • 2018
  • Removal of angular deformation induced during the welding of butt joints in thick steel plates needs expert skill and is costly. To reduce deformation, proper joint designs are studied with a prediction of deformation prior to welding. However, as the thickness of a plate increases, a predictive analysis of the welding process is more difficult, especially if there is an increase in the number of welding passes in the joint. In this study, a numerical model with the finite element method (FEM) was developed to analyze the angular deformation in the multi-pass welding of butt joints of plates made of AH32 steel that had a thickness of up to 100 mm. A series of numerical simulations were then performed based on the developed model to predict the deformations for thick plates. With the results obtained by the analyses, this study suggested optimal X-shape grooves for the butt joints of thick plates to minimize the angular deformation. As the thickness of the plate increased to 100 mm, the ratio of the depth of the front-side groove to that of the back-side groove should be gradually increased to nearly 1:3.

Elastic Analysis of Orthotropic Rectangular Thick Plates (직교이방성 장방형 후판의 탄성이론해석)

  • Kwun, Taek-Jin
    • Journal of Korean Association for Spatial Structures
    • /
    • v.1 no.1 s.1
    • /
    • pp.95-108
    • /
    • 2001
  • A system of equations is developed for the theory of bending of thick orthotropic elastic plates which takes into account the transverse shear deformability of the plate. This system of equations is of such nature that three boundary conditions can and must be prescribed along the edge of the plate, i.e. ${\omega}=0,\;M_x=0,\;M_{xy}=0\;({\omega}=0,\;M_x=0,\;M_{xy}=0)$ at simple supported edges. It can be obtained general solution that is added complementary solution ${\omega}^e$ and paticular solution ${\omega}^p$ by an assumption of solution function. In the next paper, this analytical results will be obtained for perforated thick plates.

  • PDF

Vibration and Buckling of Thick Plates using Isogeometric Approach

  • Lee, Sang Jin;Kim, Ha Ryong
    • Architectural research
    • /
    • v.15 no.1
    • /
    • pp.35-42
    • /
    • 2013
  • A study on the free vibration and linear buckling analyses of thick plates is described in this article. In order to determine the natural frequencies and buckling loads of plates, a plate element is developed by using isogeometric approach. The Non-uniform B-spline surface (NURBS) is used to represent both plate geometry and the unknown displacement field of plate. All terms required in isogeometric formulation are consistently derived by NURBS definition. The capability of the present plate element is demonstrated by using several numerical examples. From numerical results, it is found to be that the present isogeometric element can predict accurate natural frequencies and buckling loads of plates.

A novel refined shear deformation theory for the buckling analysis of thick isotropic plates

  • Fellah, M.;Draiche, Kada;Houar, Mohammed Sid Ahmed;Tounsi, Abdelouahed;Saeed, Tareq;Alhodaly, Mohammed Sh.;Benguediab, Mohamed
    • Structural Engineering and Mechanics
    • /
    • v.69 no.3
    • /
    • pp.335-345
    • /
    • 2019
  • In present study, a novel refined hyperbolic shear deformation theory is proposed for the buckling analysis of thick isotropic plates. The new displacement field is constructed with only two unknowns, as against three or more in other higher order shear deformation theories. However, the hyperbolic sine function is assigned according to the shearing stress distribution across the plate thickness, and satisfies the zero traction boundary conditions on the top and bottom surfaces of the plate without using any shear correction factors. The equations of motion associated with the present theory are obtained using the principle of virtual work. The analytical solution of the buckling of simply supported plates subjected to uniaxial and biaxial loading conditions was obtained using the Navier method. The critical buckling load results for thick isotropic square plates are compared with various available results in the literature given by other theories. From the present analysis, it can be concluded that the proposed theory is accurate and efficient in predicting the buckling response of isotropic plates.

Application of Tensioning Method for Filet Welding Deformation Reduction (필릿 용접변형 감소를 위한 장력법의 적용)

  • Lee, Joo-Sung;Park, Jae-Woo
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.197-200
    • /
    • 2006
  • The portion of thin plate is expected to increases as to the development of design and fabrication technology. The weld-induced deformation is more serious in thin plates than in thick plates because heat affect zone of thin plates is wider than that of thick plates, and in addition internal and external constraints much more influence upon weld-induced deformation of thin plates. This paper deals with the application of the mechanical tensioning method to fillet weld of thin plates to reduce the weld-induced deformation. For this, fillet welding test have been carried out for several thin plate specimens with varying plate thickness and magnitude of tensile load. From the present study, it has been found that the tenssoning method is effective on reduction of weld-induced deformation.

  • PDF

A Study on the Reduction of Fillet Welding Deformation by Applying the Tensioning Method (장력법을 이용한 필릿용접변형의 감소에 관한 연구)

  • Lee, Joo-Sung;Park, Jae-Woo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.44 no.6
    • /
    • pp.590-597
    • /
    • 2007
  • The portion of thin plate is expected to increases as to the development of design and fabrication technology. The weld-induced deformation is more serious in thin plates than in thick plates because heat affect zone of thin plates is wider than that of thick plates, and in addition internal and external constraints much more influence upon weld-induced deformation of thin plates. This paper is aimed at applying the mechanical tensioning method to fillet weld of thin plates to reduce the weld-induced deformation. For this purpose, fillet welding tests have been carried out for several thin plate specimens with varying plate thickness and magnitude of tensile load. From the present study, it has been found that the tensioning method is effective on reduction of weld-induced deformation.

Post-buckling finite strip analysis of thick functionally graded plates

  • Hajikazemi, M.;Ovesy, H.R.;Assaee, H.;Sadr, M.H.
    • Structural Engineering and Mechanics
    • /
    • v.49 no.5
    • /
    • pp.569-595
    • /
    • 2014
  • In this paper, a novel semi-energy finite strip method (FSM) is developed based on the concept of first order shear deformation theory (FSDT) in order to attempt the post-buckling solution for thin and relatively thick functionally graded (FG) plates under uniform end-shortening. In order to study the effects of through-the-thickness shear stresses on the post-buckling behavior of FG plates, two previously developed finite strip methods, i.e., semi-energy FSM based on the concept of classical laminated plate theory (CLPT) and a CLPT full-energy FSM, are also implemented. Moreover, the effects of aspect ratio on initial post-buckling stiffness of FG rectangular plates are studied. It has been shown that the variation of the ratio of initial post-buckling stiffness to pre-buckling stiffness ($S^*/S$) with respect to aspects ratios is quite independent of volume fractions of constituents in thin FG plates. It has also been seen that the universal curve representing the variation of ($S^*/S$) with aspect ratio of a FG plate demonstrate a saw shape curve. Moreover, it is revealed that for the thin FG plates in contrast to relatively thick plates, the variations of non-dimensional load versus end-shortening is independent of ceramic-metal volume fraction index. This means that the post-buckling behavior of thin FG plates and the thin pure isotropic plates is similar. The results are discussed in detail and compared with those obtained from finite element method (FEM) of analysis. The study of the results may have a great influence in design of FG plates encountering post-buckling behavior.

Is it shear locking or mesh refinement problem?

  • Ozdemir, Y.I.;Ayvaz, Y.
    • Structural Engineering and Mechanics
    • /
    • v.50 no.2
    • /
    • pp.181-199
    • /
    • 2014
  • Locking phenomenon is a mesh problem and can be staved off with mesh refinement. If the studier is not preferred going to the solution with increasing mesh size or the computer memory can stack over flow than using higher order plate finite element or using integration techniques is a solution for this problem. The purpose of this paper is to show the shear locking phenomenon can be avoided by increase low order finite element mesh size of the plates and to study shear locking-free analysis of thick plates using Mindlin's theory by using higher order displacement shape function and to determine the effects of various parameters such as the thickness/span ratio, mesh size on the linear responses of thick plates subjected to uniformly distributed loads. A computer program using finite element method is coded in C++ to analyze the plates clamped or simply supported along all four edges. In the analysis, 4-, 8- and 17-noded quadrilateral finite elements are used. It is concluded that 17-noded finite element converges to exact results much faster than 8-noded finite element, and that it is better to use 17-noded finite element for shear-locking free analysis of plates.

A coupled Ritz-finite element method for free vibration of rectangular thin and thick plates with general boundary conditions

  • Eftekhari, Seyyed A.
    • Steel and Composite Structures
    • /
    • v.28 no.6
    • /
    • pp.655-670
    • /
    • 2018
  • A coupled method, that combines the Ritz method and the finite element (FE) method, is proposed to solve the vibration problem of rectangular thin and thick plates with general boundary conditions. The eigenvalue partial differential equation(s) of the plate is (are) first reduced to a set of eigenvalue ordinary differential equations by the application of the Ritz method. The resulting eigenvalue differential equations are then reduced to an eigenvalue algebraic equation system using the finite element method. The natural boundary conditions of the plate problem including the free edge and free corner boundary conditions are also implemented in a simple and accurate manner. Various boundary conditions including simply supported, clamped and free boundary conditions are considered. Comparisons with existing numerical and analytical solutions show that the proposed mixed method can produce highly accurate results for the problems considered using a small number of Ritz terms and finite elements. The proposed mixed Ritz-FE formulation is also compared with the mixed FE-Ritz formulation which has been recently proposed by the present author and his co-author. It is found that the proposed mixed Ritz-FE formulation is more efficient than the mixed FE-Ritz formulation for free vibration analysis of rectangular plates with Levy-type boundary conditions.

Structural Reliability of Thick FRP Plates subjected to Lateral Pressure Loads

  • Hankoo Jeong;R. Ajit Shenoi;Kim, Kisung
    • Journal of Ship and Ocean Technology
    • /
    • v.4 no.2
    • /
    • pp.38-57
    • /
    • 2000
  • This paper deals with reliability analysis of specially orthotropic plates subjected to transverse lateral pressure loads by using Monte Carlo simulation method. The plates are simply supported around their all edges and have a low short span to plate depth ratio with rectangular plate shapes. Various levels of reliability analyses of the plates are performed within the context of First-Ply-Failure(FPF) analysis such as ply-/laminate-level reliability analyse, failure tree analysis and sensitivity analysis of basic design variables to estimated plate reliabilities. In performing all these levels of reliability analyses, the followings are considered within the Monte Carlo simulation method: (1) input parameters to the strengths of the plates such as applied transverse lateral pressure loads, elastic moduli, geometric including plate thickness and ultimate strength values of the plates are treated as basic design variables following a normal probability distribution; (2) the mechanical responses of the plates are calculated by using simplified higher-order shear deformation theory which can predict the mechanical responses of thick laminated plates accurately; and (3) the limit state equations are derived from polynomial failure criteria for composite materials such as maximum stress, maximum strain, Tsai-Hill, Tsai-Wu and Hoffman.

  • PDF