• Title/Summary/Keyword: Theta method

Search Result 466, Processing Time 0.026 seconds

Fault rupture directivity of Odaesan Earthquake (M=4.8, '07. 1. 20) (오대산지진(M=4.8, '07. 1. 20)의 단층파열방향성)

  • Yun, Kwan-Hee
    • Geophysics and Geophysical Exploration
    • /
    • v.11 no.2
    • /
    • pp.137-147
    • /
    • 2008
  • Fault rupture directivity of the Odaesan earthquake, which was inferred to be the main cause of the high PGAvalue (> 0.1 g) unusually observed at the near-source region, was analyzed by using the data from the nearby (R < 100 km) dense seismic stations. The Boatwright's method (2007) was adopted for this purpose in which the azimuth and takeoff angle of the unilateral rupture directivity function could be estimated based on the relative peak ground-motions of seismic stations resulting from the nature of the rupture directivity. In this study, the approximate values of the relative peak ground-motions was derived from the difference between the log residuals of the point-source spectral model (Boore, 2003) for the main and secondary events based on the Random Vibration Theory. In this derivation, the spectral difference for a frequency range between the source corner frequencies of main and secondary events was considered to reflect only the effect of the fault directivity. The inversion result of the model parameters for the fault directivity function showed that the fault-plane of NWW-SEE direction dipping steeply to the North with high rupture velocity near upward in SE direction is responsible for the observed high level of ground-motion at the near-source region.

Distributions of Hyperfine Parameters in Amorphous $Fe_{83}B_9Nb_7Cu_1$ Alloys (비정질 $Fe_{83}B_9Nb_7Cu_1$의 M$\)

  • 윤성현;김성백;김철성
    • Journal of the Korean Magnetics Society
    • /
    • v.9 no.6
    • /
    • pp.271-277
    • /
    • 1999
  • Amorphous $Fe_{83}B_9Nb_7Cu_1$ alloy has been studied by M$\"{o}$ssbauer spectroscopy. Revised Vincze method was used and distributions of hyperfine field, isomer shift, and quadrupole line broadening of the sample at various temperatures have been evaluated and Curie temperature and $H_{hf}\;(0)$ were calculated to be 393 K and 231 kOe, respectively. Temperature variation of reduced average hyperfine field shows a flattered curvein comparison with the Brillouin curve for S=1. This behavior can be explained on the basis of Handrich molecular field model, in which the parameter Δ, which is a measure of fluctuation in exchange interactions, is assumed to have the temperature dependence ${Delta}=0.75-0.64{\tau}+0.47{\tau}^2$ where $\tau$ is $T/T_C$. At low temperature, the average hyperfine field can be fitted to $H_{hf}\;(T)=H_{hf}\;(0)\;[1-0.44\;(T/T_C)^{3/2}-0.28(T/T_C)^{5/2}-… ]$, which indicates the presence long wave length spin wave excitations. At temperature near TC, reduced average hyperfine field varies as $1.00\;[1-T/T_C]^{0.39}$. It is also found that half-width of the hyperfine field distribution was 102 kOe (3.29 mm/s) at 13 K and decreased monotonically as temperature increased. Above the Curie temperature, an average quadrupole splitting value of 0.43 mm/s was found. Average line broadening due to quadrupole splitting distribution was 0.31 mm/s at 13 K and decreases monotonically to 0.23 mm/s at 320 K, whereas that due to the isomer shift distribution is 0.1 mm/s at 13 K and 0.072 mm/s at 320 K, which is much smaller than that of both hyperfine field and quadrupole splitting. The temperature dependence of the isomer shift can be fitted within the harmonic approximation to a Deybe model with a Debye temperature ${Theta}_D=424{\pm}5K$.TEX>.

  • PDF

The effect analysis of birefringence of plastic f$\heta$ Iens on the beam diameter (플라스틱 f$\heta$렌즈의 복굴절이 결상빔경에 미치는 영향분석)

  • 임천석
    • Korean Journal of Optics and Photonics
    • /
    • v.11 no.2
    • /
    • pp.73-79
    • /
    • 2000
  • We measure a beam diameter of scan and sub-scan direction of LSD (Laser Scanning Urnt) which uses $fheta$ lens produced by injecLion molding method as a scanning lens. While the measured beam diameter in scan direction, which is $62muextrm{m}$ to $68\mu\textrm{m}$, shows similar size comparing to the design beam diameter, the sub-scan beam diameter shows sIzable beam diameter deviation as much as 37 11m ranging from $78\mu\textrm{m}$ to $115\mu\textrm{m}$. Injection molding lens has the surface figure error due to the shrinkage III the cooling time and the internal distortion (birefringence) due to the uneven cooling conditIOn so that these bring about wavefront aberration (i.e., the enlargement of beam size), and are eventually expre~sed as the deterioration of the pdnting image. In this paper. we first measure and analyze beam diameter, birefringence (polanzation ratio), and asphedcal figure error of mIens in order to know the principle cause of the beam diameter deviation in sub-scan directIOn. And Lhen. through the analysis of a designed depth of focus and a calculated field curvature (imaging position of the optical axis directIon) using the above figure elTor data, we know Lhat the birefringence IS the main factor of sizable beam diameter deVIation in sub-scan direction. ction.

  • PDF

Effects of the Solid Solution Treatment Conditions and Casting Methods on Mechanical Properties of Al-Si-Cu Based Alloys (Al-Si-Cu계 합금의 주조법과 용체화처리 조건이 기계적 특성변화에 미치는 영향)

  • Moon, Min-Kook;Kim, Young-Chan;Kim, Yu-Mi;Choi, Se-Weon;Kang, Chang-Seog;Hong, Sung-Kil
    • Journal of Korea Foundry Society
    • /
    • v.38 no.6
    • /
    • pp.111-120
    • /
    • 2018
  • In this study, the effects of two different casting methods (gravity casting and, diecasting) and various solid-solution conditions on the mechanical properties of ASC (Al-10.5wt%Si-1.75wt%Cu) and ALDC12 (Al-10.3wt%Si-1.72wt%Cu-0.76wt%Fe-0.28wt% Mn-0.32wt%Mg-0.9wt%Zn) alloys were investigated. A thermodynamic solidification analysis program (PANDAT) was used to predict the liquidus, solidus, and phases of the used alloys. In the results of an XRD analysis, ${\beta}$-AlFeSi peaks were observed only in the ALDC12 alloy regardless of the casting method or SST (solid-solution treatment) conditions. However, according to the results of a FE-SEM observation, both ${\theta}(Al_2Cu)$ and ${\beta}$-AlFeSi were found to exist besides ${\alpha}$-Al and eutectic Si in the gravity-casted ASC alloy at $500^{\circ}C$ after a SST of 120min. The ${\alpha}$-AlFeSi and ${\beta}$-AlFeSi phases including the eutectic phases were also found to exist in the ALDC12 alloy. The results of a microstructural observation and analyses by XRD, FE-SEM and EDS were in good agreement with the PANDAT results. The gravity-casted ALDC12 and ASC specimens showed the highest Y.S. and UTS values after aging for three hours at $180^{\circ}C$ after a SST at $500^{\circ}C$ for 30min. At longer solid-solution treatment times at $500^{\circ}C$ in the gravity-casted ALDC12 and ASC specimens, the elongations of the ASC alloys increased, whereas they decreased slightly in the ALDC12 alloys.

The Effect of Non Magnetic ion Substitution for the FeCr2-xMxS4(M=Ga, In) by Mossbauer Spectroscopy (비자성 이온 Ga, In이 치환된 유화물 스피넬의 뫼스바우어 분광학 연구)

  • Son, Bae-Soon;Kim, Sam-Jin;Kim, Chul-Sung
    • Journal of the Korean Magnetics Society
    • /
    • v.16 no.1
    • /
    • pp.6-10
    • /
    • 2006
  • The sulphur spinel $FeCr_{2-x}M_xS_4$(M=Ga, In) have been studied with Mossbauer spectroscopy, x-ray diffraction (XRD), and vibrating sample magnetometer. The XRB patterns for samples $FeCr_{2-x}M_xS_4$(M=Ga, In: x=0.1, 0.3) reveal a single phase, which the Ga and In ions are partially occupied to the tetrahedral (A) site. The Neel temperature for the Ga substituted samples increases from 180 to 188 K, with increase from x=0.1 to 0.3. While, it decreases from 173 to 160 K, for the In substituted samples of the x=0.1 and 0.3, respectively. The Mossbauer spectra were collected from 4.2 K to room temperature. We have analyzed the Mossbauer spectra using eight Lorentzian lines fitting method for the $FeCr_{2-x}In_xS_4$(x=0.1) at 4.2 K, yielding the 1311owing results; $H_{hf}=146.0kOe,\;{\Delta}E_Q=1.88mm/s,\;\theta=36^{\circ},\;\phi=0^{\circ},\;\eta=0.6$, and R=1.9. The Ga ions enter into the both sites octahedral (B) and tetrahedral (A), simultaneously the same amounts of Fe ions migrate from the A to the B site, this result is an agreement with XRD results, too. The ${\Delta}E_Q$ of the A and B site in Mossbauer spectra of the samples $FeCr_{2-x}Ga_xS_4$(x=0.3) are 0.83 and 2.94mm/s, respectively. While they are 0.56 and 2.36mm/s for the $FeCr_{2-x}In_xS_4$(x=0.3). It is noticeable that the ${\Delta}E_Q$ for the Ga doped samples are larger than that of the corresponding In doped samples, in spite of the larger ionic radius for In ions. The bond lengths of Cr-S, for the Ga and In doped samples (x=0.3) are found to be 2.41 and $2.43\;{\AA}$, respectively. We interpret that the larger covalence effect from the smaller bond length induces a large asymmetric charge distribution. Finally, it gives a large quadrupole interaction.

Ultasonic Reflection Characteristics of the Underwater Corner Reflector (수중코오너리프렉터의 초음파반사특성에 관한 연구)

  • Lee, Dae-Jae;Sin, Hyeong-Il
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.19 no.1
    • /
    • pp.25-32
    • /
    • 1983
  • The corner reflector is used to increase the echoing area of radar targets in the air, and it can also be applied to increase the echoing area of the sonar targets under water. As the basic research for this application, the authors investigated the ultrasonic reflection characteristics under water for the corner reflector which was made of aluminum plate. The experiments were made by pulse measuring method with the magnetostrictive ferrite transducers of 28, 50 and 75KHz in the experimental water tank. The results obtained are as follows; 1. The target strength of corner reflectors were increased in proportion to the diameter and were greater at higher frequency of 75KHz than at lower frequency of 28KHz. 2. In the case of 5 corner reflectors of 150mm in diameter which have corner angles of 15$^{\circ}$, 30$^{\circ}$, 45$^{\circ}$, 60$^{\circ}$ and 90$^{\circ}$the measured values of the maximum target strength at 75KHz were-25.0 dB, -17.2dB, -15.1dB, -13.4dB and 11.0dB, and then the number of main lobes showing the maximum target strength in the backscattering patterns were 24, 12, 8, 6 and 4, respectively. 3. When 7 corner reflector of 80mm in diameter and 90$^{\circ}$ in the corner angle was located on the minor axis of the horizontal section with directional angles of 0$^{\circ}$, 2.5$^{\circ}$, 5.0$^{\circ}$, 7.5$^{\circ}$, 10$^{\circ}$ and 12.5$^{\circ}$ against the sound beam axis, the measured values of the target strength on each position at 75KHz were -21.2dB, -21.9dB, -26.0dB, -30.5dB and -36.8dB, respectively.

  • PDF