• Title/Summary/Keyword: Thermotoga maritima glucosidase (TMG)

Search Result 1, Processing Time 0.017 seconds

Enzymatic Synthesis of Novel $\alpha$-Amylase Inhibitors via Transglycosylation by Thermotoga maritima Glucosidase

  • Kim, Sung-Hee;Lee, Myoung-Hee;Yang, Sung-Jae;Kim, Jung-Woo;Cha, Hyun-Ju;Cha, Jae-Ho;Nguyen, Van Dao;Park, Kwan-Hwa
    • Food Science and Biotechnology
    • /
    • v.17 no.2
    • /
    • pp.302-307
    • /
    • 2008
  • Novel amylase inhibitors were synthesized via transglycosylation by Thermotoga maritima glucosidase (TMG). TMG hydrolyzes acarbose, acarviosine-glucose, and maltooligosaccharide by releasing $^{14}C$-labeled glucose from the reducing end of each molecule. When TMG was incubated with acarviosine-glucose (the donor) and glucose (the acceptor), two major transfer products, compounds 1 and 2, were formed via transglycosylation. The structures of the transfer products were determined using thin-layer chromatography (TLC), high-performance ion chromatography (HPIC), and $^{13}C$ nuclear magnetic resonance (NMR) spectroscopy. The results indicate that acarviosine was transferred to glucose at either C-6, to give a $\alpha-(1{\rightarrow}6$) glycosidic linkage, or at C-3, to produce an $\alpha-(1{\rightarrow}3$) glycosidic linkage. The transfer products showed a mixed-type inhibition against porcine pancreatic $\alpha$-amylase; therefore, they may be useful not only as inhibitors but also as acarbose transition-state analogs to study the mechanism of amylase inhibition.